DCS Development Systems in a Virtualized Environment
Scott Thompson – Systems Consultant
Introduction

• Challenges in supporting multiple DCS revisions
• Our Solution
• Benefits
• Your Benefits
Challenges in Supporting Multiple Systems

- Flexibility
 - Support many different customer systems
 - Currently have ~80 Customer DCS databases loaded
 - ~10 Envox NT/Control Desktop databases
 - Support many different DCS revisions
 - 16 different DCS versions
 - 5 different Windows versions (including service packs)
 - 2+ new systems in development (two more Windows Versions, Windows 7 & Server 2008 SP2)
Challenges in Supporting Multiple Systems

• Faster Turnaround
 • Reset back to base-line after testing

• Robustness
 • How fast can the system be recovered if something breaks
Challenges in Supporting Multiple Systems – Physical Hardware

• Flexibility
 • Support many different customer systems
 • Currently have ~80 Customer DCS databases loaded
 • ~10 Envox NT/Control Desktop databases

Large number of computers
Challenges in Supporting Multiple Systems – Physical Hardware

• Flexibility
 • Support many different DCS revisions
 • 16 different DCS versions
 • 5 different Windows versions (including service packs)
 • 2+ new systems in development (two more Windows Versions, Windows 7 & Server 2008 SP2)

At least 18 computers
Challenges in Supporting Multiple Systems – Physical Hardware

- Faster Turnaround
 - Reset back to base-line after testing
 Restore from image (1-3 hours)

- Robustness
 - How fast can the system be recovered if something breaks
 Restore from image (1-3 hours)
Challenges in Going Virtual

- Will the development software work on a virtual computer?

- How stable will it be?

- ESX and ESXi don’t support USB devices, how do I get the USB hardlock connected?

- How do I best save the system already running on the hardware I’m re-using?
Challenges in Going Virtual

- Will the development software work on a virtual computer?

- How stable will it be?

- ESXi and ESXi don’t support USB devices, how do I get the USB hardlock connected?

- How do I best save the system already running on the hardware I’m re-using?
Challenges in Going Virtual

• Will the development software work on a virtual computer?
 – In our case - Yes

• How stable will it be?
 – Similar to physical machine installation

• ESX and ESXi don’t support USB devices, how do I get the USB hardlock connected?
 – USB Over Network ESX(i) 4.1

• How do I best save the system already running on the hardware I’m re-using?
 – VMWare Converter
Challenges in Going Virtual

• Still need a Windows computer to manage the ESX(i) computers

• The USB Over Network server needs to be installed on a Windows or Linux computer
Challenges in Supporting Multiple Systems – Virtualized

- Flexibility
 - Support many different customer systems
 - Currently have ~80 Customer DCS databases loaded
 - ~10 Envox NT/Control Desktop databases

5 physical computers, many virtual
Challenges in Supporting Multiple Systems – Virtualized

• Flexibility
 • Support many different DCS revisions
 • 16 different DCS versions
 • 5 different Windows versions (including service packs)
 • 2+ new systems in development (two more Windows Versions, Windows 7 & Server 2008 SP2)

5 physical computers, many virtual
Challenges in Supporting Multiple Systems - Virtualized

• Faster Turnaround
 • Reset back to base-line after testing
 Restore to snapshot (5 minutes)

• Robustness
 • How fast can the system be recovered if something breaks
 Restore to snapshot (5 minutes)
REM Development Network

• 73 Servers (real and virtual)
 – 16 physical stand-alone servers (application dedicated)
 – 5 VMWare Servers (running on Server 2003)
 • 17 virtual machines
 – 4 ESXi v4.x machines
 • 31 virtual machines
 – 21 Pro+ (600 DST – 12,000 DST)
 – 2 Batch Executives (for ~12,000 DST systems each)
 – 2 Batch Historians
 – Iconics Server
 – Mimic Server
 – Thin Manager Server
 – Syncade Server
 – Control Desktop Server (Windows NT 4)
 – Virtual CIOC
REM Development Network

- Used existing hardware
- Upgraded RAM for three ESXi servers
- Additional hardware cost to add 19 virtual machines was ~$340.
REM Development Network

- 19 licenses for Server 2003/Server 2008
 - $14,440
 - If buying physical machine, cost is buried in hardware cost
- VMWare ESXi
 - $0
- Windows TS CALS
 - $0 (pre-existing)
- USB Over Network
 - $600 for 8 USB devices
REM Development Network

- 19 licenses for Server 2003/Server 2008
 - $14,440
 - If buying physical machine, cost is buried in hardware cost
- VMWare ESXi
 - $0
- Windows TS CALS
 - $0 (pre-existing)
- USB Over Network
 - $600 for 8 USB devices
REM Benefits

• Reduced hardware footprint
 – 3 vs. 19

• Reduced power usage
 – 750W vs. 4750W

• Reduced A/C load
 – 8,091 BTU/hr vs. 51,243 BTU/hr
 – < 1 ton vs. 5 ton

• Increased flexibility
 – Computers that support NT hard to find

• Decreased setup time for new system
 – Can have a new virtual computer on-line < 1hr.
REM Benefits

• Lower testing risk
 – Take snapshots before installing something untested or installing updates
 – Easily revert to the snapshot if something doesn’t work correctly
Large Plant DCS Development System Example – Physical Hardware

- Configuration Server, Batch/Continuous Historian, Batch Executive, Operator Station RT Server, Virtual Controllers Application Station (3)
 - Configuration Server - 1 R710 - $7200
 - Historian, Batch Executive - 2 R710 - $14400
 - Operator Station RT Server – 1 R710 - $7200
 - Virtual Controllers – 3 R710 - $21600
 - $50,400
Large Plant DCS Development System Example – Virtualized

- Configuration Server, Batch/Continuous Historian, Batch Executive, Operator Station RT Server, Virtual Controllers Application Station (3)
 - Host Server - $7200
 - 16 GB RAM upgrade - $1400
 - Configuration Server – 1 OS License - $750
 - Historian, Batch Executive - 2 OS Licenses - $1500
 - Operator Station RT Server – 1 OS License - $750
 - Terminal Server License (4 users) - $320
 - Virtual Controllers – 3 OS Licenses - $2350
 - $14,270
Large Plant DCS Development System Example

<table>
<thead>
<tr>
<th></th>
<th>Without Virtualization</th>
<th>With Virtualization</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$50,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4,788 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Dissipation</td>
<td>16,000 BTU/hr (1.36 tons)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Large Plant DCS Development System Example

<table>
<thead>
<tr>
<th></th>
<th>Without Virtualization</th>
<th>With Virtualization</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$50,400</td>
<td>$14,270</td>
<td></td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4,788 W</td>
<td>700 W</td>
<td></td>
</tr>
<tr>
<td>Heat Dissipation</td>
<td>16,000 BTU/hr (1.36 tons)</td>
<td>2,334 BTU/hr (.19 tons)</td>
<td></td>
</tr>
</tbody>
</table>
Large Plant DCS Development System Example

<table>
<thead>
<tr>
<th></th>
<th>Without Virtualization</th>
<th>With Virtualization</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$50,400</td>
<td>$14,270</td>
<td>$36,130 one-time</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4,788 W</td>
<td>700 W</td>
<td>$2,100 per year (at $0.06 per kWh)</td>
</tr>
<tr>
<td>Heat Dissipation</td>
<td>16,000 BTU/hr (1.36 tons)</td>
<td>2,334 BTU/hr (.19 tons)</td>
<td>$697 per year (assumes very efficient A/C system, 0.33 K-factor)</td>
</tr>
</tbody>
</table>
Large Plant DCS Development System Example

<table>
<thead>
<tr>
<th></th>
<th>Without Virtualization</th>
<th>With Virtualization</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$50,400</td>
<td>$14,270</td>
<td>$36,130 one-time</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4,788 W</td>
<td>700 W</td>
<td>Reduce Carbon Footprint</td>
</tr>
<tr>
<td>Heat Dissipation</td>
<td>16,000 BTU/hr (1.36 tons)</td>
<td>2,334 BTU/hr (.19 tons)</td>
<td>Reduce Carbon Footprint</td>
</tr>
</tbody>
</table>