EVOLUTION OF TECHNOLOGY
Single-Use Vs Stainless Steel – Are Hybrid Facilities the Best of Both Worlds?
• Company introduction
• Single-use systems, who and/or what do we mean?
• Current trends and thinking
• Stages of single-use system integration
• Case studies
• Conclusions
ZETA Group

- Key supplier of biopharmaceutical turnkey projects
- Established in 1989, 30 years of experience
- Headquarters in Lieboch/Graz, Austria, Europe
- Worldwide presence through branches and partners
- Approx 600 employees, of which 350 are engineers

- Lieboch, Graz
 - 1,700 m² (18,300 sq ft)
 - Total indoor height: 8.5 m (335”)
 - Crane hook height: 7 m (275”)
 - Crane load: 2 x 8 metric tons
 - Door height: 7.5 m (295”)
 - Door width: 4.5 m (180”)
 - Connection to clean media distribution center

- Lieboch, Graz
 - 430 m² (4,600 sq ft)
 - Total indoor height: 14 m (550”)
 - Crane hook height: 12 m (475”)
 - Crane load: 1 x 15 metric tons
 - Door height: 7 m (275”)
 - Door width: 4.8 m (190”)
 - Connection to clean media distribution center

- Lebring, Austria
 - 1,300 m² (14,000 sq ft)
 - Total indoor height: 12 m (475”)
 - Offices 250 m² (2,700 sq ft)

- Brno, Czech Republic
 - 1,200 m² (12,900 sq ft)
 - Total indoor height: 6 m (235”)
 - Offices 200 m² (2,100 sq ft)
Business Lines

Engineering & Services
- General Planning
- Plant Installation & Commissioning
- Engineering: Conceptual, Basic, Detail
- Process Development & Scale-Up
- Process Optimization & Retro-Fitting
- CQV
- Maintenance
- Customer Care Services
- 24/7 Service Hotline

Customized Systems
- USP Systems: Fermentation, Media/Buffer Preparation, Harvest
- DSP Systems: Filtration, Chromatography, Viral Inactivation
- Solution/Buffer Preparation Systems
- Formulation Systems
- Clean Media Systems
- CIP/SIP Systems

Automation
- Engineering: Conceptual, Basic, Detail
- Project & Quality Management
- DCS, Batch Management & SCADA System Solutions, SUB and freeze/thaw controls
- Software & Hardware Design & Engineering
- Switchgear and Cabinets
- Installation & Commissioning
- FAT/SAT
- CQV

Products & Components
- Magnetic Agitators
- Freeze & Thaw Systems
- Transfer Panels
- De-dusting Rings

Food Systems
- Pasteurizing Systems for Food Applications
- CIP/SIP Solutions
- Ingredient Adding Systems
- Aseptic Filling Systems
- Sampling Devices
- Screening Solutions
- Consulting & Engineering
1. Delivering the project on time

2. Being on budget

3. Quality of product and delivery
Single-Use Systems

- Equipment type
 - Bags – buffer, media, additives and ingredients
 - Single-use bioreactors (SUB)
 - Upstream and downstream – connectors, tubing sets, manifolds, assemblies, filters, cartridges, columns etc...

- Brands (SUBs)
 - ABEC
 - GE
 - Pall
 - Sartorius
 - Thermo Fisher
 - Merck Millipore etc...

The average responses from developer survey respondents reporting use of various SUS equipment at their facility.

The leading reasons cited as “very important” resulting in adoption of single-use systems were:

- “Decrease risk of cross-product contamination” cited by 46.2%.
- “Eliminating cleaning requirements” 41.2%.
- “Reducing time to get facility up and running” 44.1%.
- “Reduce capital investment in facility & equipment” 40.4%.

The top downsides or potential problems with single-use systems, those cited by >50% of respondents, were:

- “Breakage of bags and loss of production material” cited by 75.0%
- “Leachables and extractables” cited by 73.3%.
- “High cost of disposables” 68.8%.
- “Material incompatibility with process fluids” cited 56.7%
- “We do not want to become vendor-dependent (single-source issues)” also at 56.7%.

When asked about plans for bioreactors purchases, 70.2% of developer/manufacturer respondents reported they would specify single-use bioreactors (SUB) for any new facilities at clinical scale and 51.9% for new commercial manufacturing facilities.

About half of the respondents now expect to see fully single-use facilities in five years.

Trends in the Biopharma Market

- Year-on-year growth
- Development of more potent drugs
- Trend toward personalized medicine
 - Reduced batch size per drug
 - Increasing demand for smaller production capacity
- Cost pressure
 - Diminished likelihood of finding new blockbuster
 - Increased competition due to biosimilars
- Resurgence of cell and gene therapy
- Quick time to market (fast track projects)
 - Decision on investment as late as possible
- Biopharma industry is forced to adapt its production facilities to the evolving markets

Production facilities: flexible and cost efficient
A Reality Check on the Commercial Scale

PROS

- **Investment costs are much lower**
 Krämer, Müller, SANOFI: 24 - 40 %
 Guldager, NNE: max. 30 %

- **Project realization is much faster**
 BUT: lead times for customized bags: up to 25 weeks

- **No CIP/SIP of single use flow path**
 BUT: utilities available at commercial scale

- **Higher degree of flexibility**
 BUT: also stainless steel equipment can be modular design

CONS

- **Limited industrial usability**
 Lack of standards and specifications

- **1 design fits all**
 Off-the-shelf products limit process flexibility

- **Limited customization service**

- **Limited project execution**

- **Automation islands**

- **Lack of suitable sensors**

- **Many manual operations**

- **Range of choice of SUT**

Strong need to “mature“ SU systems for GMP

Standards and methods similar to those recognized in Stainless Steel systems required for SUT
STAGE I – THE BALLROOM CONCEPT
Standalone Process Units & Highest Flexibility

<table>
<thead>
<tr>
<th>Character</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2 × 2001 perfusion fermenter</td>
</tr>
<tr>
<td>b</td>
<td>1 × 2001 and 1 × 1,001 media preparation tank</td>
</tr>
<tr>
<td>c</td>
<td>2 × depth filtration (one for each fermenter)</td>
</tr>
<tr>
<td>d</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>e</td>
<td>Continuously operated protein A capture</td>
</tr>
<tr>
<td>f</td>
<td>Low pH viral inactivation</td>
</tr>
<tr>
<td>g</td>
<td>Flow-through intermediate purification and polishing (e.g., AEX and CEX)</td>
</tr>
<tr>
<td>h</td>
<td>1 × 2001 and 2 × 1,001 buffer preparation tank</td>
</tr>
<tr>
<td>i</td>
<td>Viral filtration</td>
</tr>
<tr>
<td>j</td>
<td>Post viral part (formulation, bioburden reduction, filling of bulk drug substance)</td>
</tr>
<tr>
<td>k</td>
<td>Seed lab</td>
</tr>
<tr>
<td>l</td>
<td>Autoclave and Washing</td>
</tr>
<tr>
<td>m</td>
<td>Equipment storage</td>
</tr>
<tr>
<td>n</td>
<td>Cell bank</td>
</tr>
<tr>
<td>o</td>
<td>Frozen storage</td>
</tr>
<tr>
<td>p</td>
<td>Storage room (e.g., process consumables)</td>
</tr>
<tr>
<td>q</td>
<td>Weighing</td>
</tr>
<tr>
<td>r</td>
<td>In process control (IPC) lab</td>
</tr>
<tr>
<td>s</td>
<td>Coldroom</td>
</tr>
</tbody>
</table>
STAGE I – Off-the-Shelf Single-Use Process Units

Allegro™ Single-Use Tangential Flow Filtration Systems Allegro CS4500

- Akta™ Ready System
- Standardized, dedicated SU system
- Stand-alone package solutions
- Limited customization service
- Rigid project execution
STAGE I - Process for GMP Compliant Facilities

- Process flow
- Facility layout
- Interfaces
- Automation
- Validation
- Operability
- Safety
- Maintenance
- Project Management
Case Study 1 - STAGE I – THE BALLROOM CONCEPT
Engineering for Intelligent Clustering of Mobile SU Process Units

Layout optimisation studies

- Personnel & material flow
- HVAC & pressure zone specification
- Provision of
 - structures,
 - platforms
 - media supply points
 - user interfaces
Case Study 1 - STAGE I – THE BALLROOM CONCEPT
Engineering for Intelligent Clustering of Mobile SU Process Units

Benefits:

- Professional set-up for industrial scale production
- Reduces operator errors
- Increases operability & operator safety
- Increases process safety
- Improves routing & tubing management
Case Study 2 - Stage II – Stainless Steel Support for Intelligent Clustering of SU Process Units
Case Study 3 – Stage II - Hybrid Plant 50, 500 & 2000L SUB

<table>
<thead>
<tr>
<th>LOCATION:</th>
<th>Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NAME:</td>
<td>Work platform & automation of single-use bioreactors (SUBs)</td>
</tr>
<tr>
<td>SYSTEM CATEGORY:</td>
<td>Single-use technology integration</td>
</tr>
<tr>
<td>PRODUCT:</td>
<td>Engineering, manufacturing and installation of stainless steel work platform incl. media supply piping in clean rooms & automation/EMSR of SUB</td>
</tr>
<tr>
<td>DURATION:</td>
<td>10 months in total, mechanical engineering, automation & SUB</td>
</tr>
<tr>
<td>DESCRIPTION:</td>
<td>Integration of single use process equipment into a stainless steel plant</td>
</tr>
</tbody>
</table>
Case Study 3 - Stage II - Hybrid Plant 50, 500 & 2000L SUB

- Basic Design
- Detail Design
- Assembly of all components into a functional system
- Static & Dynamic FAT
- Delivery
- Electrical and mechanical Installation
- Programming
- Commissioning
- Qualification
Case Study 3 - Stage II – Engineering Documentation

PID creation for the SUB

- Pipes, tubes, signals, balances, probes
- Stainless steel standard
- Scope of supply
- Interfaces
Case Study 3 - Stage II – Detailed Engineering

Elevation of bioreactor to improve access for operation and to gain space TCU

Minimize tubing length using SS piping

Avoid “kinking” and trip hazards with intelligent tube routing and management
• Creation of a PCS7 standard XDR software for GE in 2017

• Use of only Siemens standard functions from the PCS7 internal library

This standard software and its modular concept is already programmed and qualified according to GAMP 5

• PCS7 is fully compatible to CFR part 11
Full integration of standalone single-use and auxiliary systems

Ensure functionality through static and dynamic FAT at ZETA workshop
• **SS backbone** can serve equipment from different suppliers

• **SS components** (gassing units, TCU, pump stations) compatible to different SUB sizes

• **SUT/SUB supplier** is interchangeable between campaigns
<table>
<thead>
<tr>
<th>LOCATION:</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NAME:</td>
<td>Basic design, detailed design, construction and integration of SUB into existing plant</td>
</tr>
<tr>
<td>SYSTEM CATEGORY:</td>
<td>Single-use technology integration</td>
</tr>
<tr>
<td>PRODUCT:</td>
<td>Engineering, manufacturing and installation of stainless steel filtration unit, inc. piping, media supply & automation/EMSR of SUB</td>
</tr>
<tr>
<td>DURATION:</td>
<td>6 months</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Integration of single use process equipment into a stainless steel plant</td>
</tr>
</tbody>
</table>
Case Study 4 – Stage III - PFD Development

SS Equipment

Connection Tubing-Tubing

Connection Tubing-SS

SU Equipment

Bag Type 3D

Bag Type 2D

www.zeta.com
STAGE III – CUSTOMIZED SUPPLIER AGNOSTIC CONCEPT
Automation: Modular Software Concept

- Process will be structured into unit operations acc. to PFD/P&ID
- Units are the main element in the S88 physical model for batch automation
- SU equipment must also be units in the automation architecture for hybrid systems
- S88 compliant DCS with batch is able to handle automated and manual operating modes:
 - Automated for stainless steel
 - Mainly manual/semi automated for single use units
 - Manual phases will guide the operator and will track human interventions
 - Recipe operation will either call an equipment phase or a manual phase
STAGE IV – CUSTOMIZED SU PROCESS UNITS
SU Components & SS Standards & Integrated Automation

• Application of SS system standards and methods for SUS solutions
• Customized design for single use units
• Supplier agnostic design (hard & software)
• Free choice of components
• Reduced dependency on SU suppliers
Bag & manifold details

- Type of connection
- Drawing & SU specification
Customized Software Engineering

- Software engineering according to customer library
- Integration into existing batch environment
- Testing software FAT & dynamic FAT
- Commissioning
- Project management
Summary - Benefits of Hybrid Plants

- **Process improvement**
 Equipment selection “doing more with less” (independent of “material”)

- **Holistic planning approach**
 (Process / building / HAVAC / utilities & periphery)

- **Evaluation of SU vs SS technology**
 Allows for mix-and-match strategy

- **Qualitative**
 Facility layout, ergonomics, flexibility, turn down ratios, vendor support, material quality and variations

- **Quantitative**
 Unit sizes, transfer rates, heat transfer, mixing time, yield, production schedule
Conclusions

• Stainless steel facilities are not becoming extinct, but are reducing in numbers:

 “Classic, large scale, fixed, stainless steel equipment-based facilities will continue to dominate biopharmaceutical manufacturing, particularly at commercial scales and in terms of manufacturing volume.”

• Single-use will continue to grow, particularly at pre- and sub-commercial manufacturing scales.
• Process design and engineering are still heavily relied upon.
• A lot of stainless steel is required in single-use plants.
• One person’s SU facility is another person’s hybrid facility.
THANK YOU FOR YOUR ATTENTION!