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1 I. Background and Scope 
2 
3 To fulfill its mission of protecting, promoting, and advancing public health, the Food and 
4 Drug Administration’s (FDA’s) Center for Drug Evaluation and Research (CDER), in 
5 collaboration with the Center for Biologics Evaluation and Research (CBER) and the 
6 Center for Devices and Radiological Health (CDRH), including the Digital Health Center 
7 of Excellence  (DHCoE), is publishing this document to facilitate a discussion with 
8 stakeholders on the use of artificial intelligence (AI)1 and machine learning (ML)2 in 
9 drug development,3,4 including in the development of medical devices intended to be 

10 used with drugs, to help inform the regulatory landscape in this area. 
11 
12 FDA helps to ensure that drugs are safe and effective while facilitating innovations in 
13 their development. Recent, rapid technological innovations in data collection and 
14 generation tools, combined with robust information management and exchange systems 
15 and advanced computing abilities, may transform the way drugs are developed and 
16 used (ElZarrad, Lee, Purcell, & Steele, 2022). This evolving ecosystem presents 
17 unique opportunities and challenges, and FDA is committed to working across its 
18 medical product centers with partners domestically and internationally to ensure that the 
19 full potential of these innovations is realized for the benefit of the public. 
20 
21 Developers, manufacturers, regulators, academic groups, and other stakeholders are 
22 working to develop a shared understanding of where and how specific innovations, such 
23 as AI and ML, can best be used throughout the drug development process. FDA is 
24 publishing this discussion paper as part of a multifaceted approach to enhance mutual 
25 learning and to establish a dialogue with FDA stakeholders on this topic. AI can 
26 generally be described as a branch of computer science, statistics, and engineering that 
27 uses algorithms or models to perform tasks and exhibit behaviors such as learning, 
28 making decisions, and making predictions.5 ML is considered a subset of AI that allows 
29 ML models to be developed by ML training algorithms through analysis of data, without 
30 models being explicitly programmed.6 Additionally, there are a variety of ML methods 
31 and different types of algorithms that may be utilized in a given context. For purposes 
32 of this document, AI and ML will be referenced together as AI/ML, and references to 

1 Words and phrases in bold italics are defined in the Glossary. 
2 There are multiple definitions for AI and ML, and the Glossary includes several definitions from federal 
legislation and agencies. 
3 For purposes of this discussion paper, all references to drug or drugs include both human drugs and 
biological products. 
4 FDA is focusing this discussion paper on drug development.  However, many of the AI/ML scientific and 
regulatory science principles outlined in this document may be applicable across all medical products, 
including in the development of medical devices intended to be used with drugs (including, but not limited 
to, combination products, companion devices, and complementary devices). Some medical devices 
intended to be used with drugs are intended for use only in clinical investigations; others are intended to 
be marketed for use outside of clinical investigations. Examples include medical devices that help identify 
side effects of drugs as well as medical devices that assist in drug dosing. 
5 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
6 Ibid. 
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33 drug development and the drug development process include a wide scope of activities 
34 and phases, including manufacturing and postmarket drug safety monitoring, among 
35 others.7,8 

36 
37 This discussion paper, which considers the application of AI/ML in the broad context of 
38 the drug development process, is not FDA guidance or policy and does not endorse a 
39 specific AI/ML use or approach in drug development. Rather, this discussion paper is 
40 an initial communication with stakeholders, including academic groups, researchers, 
41 and technology developers, that is intended to promote mutual learning and discussion. 
42 It is particularly beneficial for those new to drug development and human subjects 
43 research, to recognize some of the initial thinking and considerations involved with 
44 utilizing these technologies, including having familiarity with FDA’s current activities, 
45 initiatives, practices, and potentially applicable regulations. FDA is soliciting feedback 
46 on the opportunities and challenges with utilizing AI/ML in the development of drugs, as 
47 well as in the development of medical devices intended to be used with drugs. This 
48 feedback will provide an additional resource to help inform the regulatory landscape in 
49 this area. 
50 
51 In this discussion paper, three main topics are discussed: 
52 
53 • Landscape of current and potential uses of AI/ML: FDA recognizes the 
54 potential for AI/ML to enhance drug development in many ways, including to help 
55 bring safe and effective drugs to patients faster; provide broader access to drugs 
56 and thereby improve health equity; increase the quality of manufacturing; 
57 enhance drug safety; and develop novel drugs and drug classes, as well as 
58 personalized treatment approaches. Section II provides examples of the use of 
59 AI/ML to highlight the potential impact of AI/ML across the drug development 
60 process and includes a brief description of FDA’s experience with AI/ML in drug 
61 development. The list of examples in this section is not comprehensive of all 
62 AI/ML uses, and it includes uses where FDA oversight may or may not be 
63 applicable. The purpose of this section is to promote shared learning and to 
64 identify areas where future regulatory clarity may be helpful. 
65 
66 • Considerations for the use of AI/ML: FDA is also aware of the potential 
67 concerns and risks with emerging innovations such as AI/ML and will share initial 
68 considerations and solicit feedback on how to help ensure the responsible 
69 utilization of AI/ML in drug development. Section III briefly describes several key 
70 efforts to develop general principles, standards, and practices for the use of 
71 AI/ML across diverse applications and then explores the principles and 
72 considerations that may be particularly applicable when using AI/ML for drug 
73 development activities. FDA understands that AI/ML use in drug development is 

7 See The Drug Development Process, January 2018. https://www.fda.gov/patients/learn-about-drug-and-
device-approvals/drug-development-process 
8 In this discussion paper, the topic of clinical investigations focuses on the drug development process, 
however, many other activities and phases included as part of the drug development process may also be 
part of the development process for other medical products; see footnote 4. 
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74 diverse, and careful assessments that consider the specific context of use are 
needed.  Taking a risk-based approach to evaluate and manage the use of AI/ML 

76 can help facilitate innovations and protect public health. 
77 
78 • Next steps and stakeholder engagement: FDA is interested in mutual 
79 opportunities to learn and engage with all stakeholders to establish a shared 

understanding of AI/ML systems and their rapidly evolving potential uses and 
81 considerations in drug development. As part of this ongoing effort, FDA 
82 welcomes feedback on this discussion paper and any AI/ML-related issues 
83 pertaining to drug development. Specifically, to initiate a broader dialogue with 
84 stakeholders, Section III includes several key questions to which interested 

parties can provide perspectives and Section IV outlines opportunities for future 
86 engagement. 
87 
88 II. Current and Potential Uses of AI/ML in the Drug Development Process 
89 

This section provides a high-level overview of the diverse and evolving uses of AI/ML 
91 being employed throughout the drug development process.  These examples are not 
92 comprehensive of all AI/ML uses and include uses where FDA oversight may or may 
93 not be applicable.9 Additionally, while some of the uses of AI/ML described in this 
94 section may also have utility in clinical practice, this paper is focused on uses of AI/ML 

in the drug development process.  The purpose of this section is to promote shared 
96 learning and to identify areas where future FDA regulatory clarity may be beneficial.  
97 
98 Although the overall drug development process is an iterative continuum of activities 
99 and not strictly linear in nature, for simplicity, this section utilizes different phases of 

drug development to highlight several uses of AI/ML, ranging from drug discovery and 
101 clinical research to postmarket safety surveillance and advanced pharmaceutical 
102 manufacturing. The section also includes references to how AI/ML is being applied to 
103 real-world data (RWD) and data from digital health technologies (DHTs) in support 
104 of drug development. Some of the general challenges and considerations with utilizing 

AI/ML in different drug development use cases are discussed in Section III. 
106 
107 A. Drug Discovery 
108 
109 Early drug discovery is one of the areas with significant interest and activity in utilizing 

AI/ML. Included below is a brief discussion of the current and potential uses of AI/ML 
111 for drug target identification, selection, and prioritization, as well as compound 
112 screening and drug design in drug discovery. 
113 
114 1. Drug Target Identification, Selection, and Prioritization 

9 The examples listed were not necessarily submitted to FDA for review or approval and are not meant to 
suggest an endorsement of any specific approach. The FDA does not endorse any particular use of 
AI/ML. 
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The early stages of drug development generally rely on the initial identification of a 
suitable biological target for drug candidates. As a starting point, the process of 
identifying biological targets and elucidating disease relationships can utilize AI/ML to 
analyze and synthesize significant amounts of information from existing scientific 
research, publications, and other data sources. The growth of available genomic, 
transcriptomic, proteomic, and other data sources from healthy persons and those with 
a specific disease of interest provide a significant opportunity to inform biological target 
selection. These datasets are often complex and originate from disparate sources, 
which can be well-suited for the utilization of AI/ML approaches (Fumagalli et al., 2023). 
Building from existing validated data, AI/ML can be applied to mine and analyze these 
large multi-omics and other datasets to provide information on the potential structure 
and function of biological targets to predict their role in a disease pathway (Vamathevan 
et al., 2019; Weissler et al., 2021). While early target identification and prioritization is a 
critical step where AI/ML could help improve the efficiency and effectiveness of drug 
development, it is important to validate the role of the biological target in the disease of 
interest through subsequent studies (Fumagalli et al., 2023). 

2. Compound Screening and Design 

The discovery of potential drug candidates that modify the function of the identified 
biological targets of interest generally involves significant in silico or experimental 
screening of compound libraries, followed by subsequent refinement of a compound’s 
specificity and selectivity for the biological target. In the area of compound screening, 
potential AI/ML uses include predicting the chemical properties and bioactivity of 
compounds and predicting efficacy and potential adverse events based on the 
compound’s specificity and affinity for a target (Chan, Shan, Dahoun, Vogel, & Yuan, 
2019; Schneider et al., 2020). 

AI/ML approaches used to further elucidate drug-target interactions could also help 
provide predictions about classes of drugs potentially interacting with the same targets 
or having a similar mechanism of action, which may help predict the toxicity of a 
molecule based on specific known features. This strategy can help guide drug 
repurposing efforts that could utilize previously characterized compounds. Drug 
repurposing efforts utilizing AI/ML can also potentially benefit from the increased 
availability of suitable RWD from a variety of sources (e.g., electronic health records 
(EHRs), registries, and DHTs) to identify previously unknown effects of drugs on 
disease pathways (Z. Liu et al., 2022). 

Finally, AI/ML could accelerate advances in de novo drug design (Mouchlis et al., 2021). 
For example, AI/ML may be applied to help predict the 3D structure of target proteins, 
informing chemical synthesis and the potential effect of a drug candidate on the target, 
including predicting affinity and potential toxicity (Chan et al., 2019; Jumper et al., 2021; 
Vamathevan et al., 2019). It is worth noting that one must be cautious with the use of 
AI/ML in 3-D structure prediction, as many proteins that are developed for 
pharmaceutical applications are codon optimized (with many synonymous mutations 
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incorporated), the impact of which on protein structure is still an area of active research 
(Fumagalli et al., 2023; Jumper et al., 2021). 

B. Nonclinical Research 

Nonclinical research refers to in vitro and in vivo studies and is designed to further 
advance potential therapeutics towards clinical research in humans. Nonclinical 
studies, in support of new drug development, can be conducted at all phases of 
development: prior to clinical studies, in parallel with clinical development, and even in 
postmarketing environments. Data from pharmacokinetic, pharmacodynamic, and 
toxicologic studies conducted in animals; exploratory in vitro and in vivo mechanistic 
studies conducted in animal models; organ-on-chip and multi-organ chip systems; and 
cell assay platforms may be leveraged using AI/ML (e.g., computational modeling and 
simulation techniques) for evaluating toxicity, exploring mechanistic models, and 
developing in vivo predictive models (Bulitta et al., 2019; Harrison & Gibaldi, 1977; Hsu 
et al., 2014; Mager, Woo, & Jusko, 2009; Shroff et al., 2022). 

Pharmacokinetics (PK) describes the time course of drug absorption, distribution, 
metabolism, and excretion. Pharmacodynamics (PD) explores the body’s biological 
response to drugs. When PK and PD are integrated in a model, the model can describe 
how the drug effect will change with time when a certain dose or dosing regimen is 
used. Pharmacokinetic/pharmacodynamic (PK/PD) modeling has been used in drug 
development for decades and can be applied at both the nonclinical and clinical stages 
(Daryaee & Tonge, 2019). Along with the advances in computational tools and 
technology and the availability of modeling platforms, use of physiologically-based 
pharmacokinetic (PBPK) and physiologically-based PK/PD (PBPK-PD) modeling is also 
increasing (Sager, Yu, Ragueneau-Majlessi, & Isoherranen, 2015).  There are current 
efforts to explore the use of more novel AI/ML algorithms (e.g., artificial neural network 
models and tree-based models) for PK/PD modeling. For example, a recurrent neural 
network, an ML algorithm commonly used for analyzing time series data, may be used 
to complement traditional PK/PD models in the area of highly complex PK/PD data 
analysis, and possibly lead to improved accuracy for nonclinical and clinical 
applications (Liu et al., 2021). 

C. Clinical Research 

Clinical research typically involves a series of phases of clinical trials in increasing 
numbers of human subjects to assess the safety and effectiveness of a drug. One of 
the most significant applications of AI/ML in drug development is in efforts to streamline 
and advance clinical research. For example, AI/ML is being utilized to analyze vast 
amounts of data from both interventional studies (also referred to as clinical trials) and 
non-interventional studies (also referred to as observational studies) to make inferences 
regarding the safety and effectiveness of a drug. Additionally, AI/ML has the potential to 
inform the design and efficiency of non-traditional trials such as decentralized clinical 
trials, and trials incorporating the use of RWD extracted from EHRs, medical claims, or 
other data sources. AI/ML may also have a role in analyzing and interpreting data 
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207 collected from DHTs used in clinical studies. Finally, AI/ML could also be used to 
208 improve the conduct of clinical trials and augment operational efficiency. The following 
209 subsections will highlight some of the uses and potential uses of AI/ML during the 
210 design and conduct of clinical research. 
211 
212 1. Recruitment 
213 
214 AI/ML is increasingly being developed and used to connect individuals to trials for 
215 investigational treatments from which participants may benefit. Specifically, AI/ML is 
216 being used to mine vast amounts of data, such as data from clinical trial databases, trial 
217 announcements, social media, medical literature, registries, and structured and 
218 unstructured data in EHRs, which can be used to match individuals to trials (Harrer, 
219 Shah, Antony, & Hu, 2019). While these algorithms are trained on high volumes of 
220 patient data and enrollment criteria from past trials, it is important to ensure adequate 
221 representation of populations that are likely to use the drug (e.g., gender, race, and 
222 ethnicity) as matching algorithms are created and, when used, to confirm that equitable 
223 inclusion was achieved during the recruitment process.  In the future, these 
224 technologies, if properly validated, may continue to play an increasing role in matching 
225 individuals with investigational treatments. 
226 
227 2. Selection and Stratification of Trial Participants 
228 
229 Enrichment strategies can aid participant selection in clinical investigations designed to 
230 demonstrate the effectiveness of drug and biological products.10 AI/ML has been 
231 explored and used as part of a clinical investigation in the prediction of an individual 
232 participant’s clinical outcome based on baseline characteristics (e.g., demographic 
233 information, clinical data, vital signs, labs, medical imaging data, and genomic data) 
234 (Aerts et al., 2016; Athreya et al., 2019; Dercle et al., 2020; Harrer et al., 2019; 
235 Kawakami et al., 2019).  Such predictive models can be used to enrich clinical trials 
236 (e.g., identifying high-risk participants or participants more likely to respond to the 
237 treatment). When these types of AI/ML algorithms are used for patient evaluation and 
238 selection before randomization, it may be possible to reduce variability and increase 
239 study power (Y. Wang, Carter, Li, & Huang, 2022). 
240 
241 In addition to utilization in enrichment strategies, such predictive models can also be 
242 used for participant stratification, for example, if an AI/ML model could predict the 
243 probability of a serious adverse event before an investigational treatment is 
244 administered. Based on their predicted risk for these serious adverse events, 
245 participants can be stratified into different groups and then monitored accordingly (or 
246 excluded depending on predicted severity of the adverse event). 
247 
248 3. Dose/Dosing Regimen Optimization 
249 

10 See the guidance for industry Enrichment Strategies for Clinical Trials to Support Determination of 
Effectiveness of Human Drugs and Biological Products (March 2019). 
https://www.fda.gov/media/121320/download 
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AI/ML can be used to characterize and predict PK profiles after drug administration.  It 
251 can also be used to study the relationship between drug exposure and response, taking 
252 into consideration confounding factors. These kinds of models can be used to optimize 
253 the dose/dosing regimen selection for a study (Liu et al., 2021; Lu, Deng, Zhang, Liu, & 
254 Guan, 2021).  This could potentially include aiding in dose optimization in special 

populations where there may be limited data (e.g., rare disease studies, pediatric and 
256 pregnant populations). 
257 
258 4. Adherence 
259 

AI/ML can be used to monitor and improve adherence during a clinical trial through 
261 tools, such as smartphone alerts and reminders, eTracking of medication (e.g., smart 
262 pillboxes and tools for visual confirmation) (Mason et al., 2022), and eTracking of 
263 missed clinical visits, which trigger non-adherence alerts. Examples of AI/ML used in 
264 clinical research to improve medication adherence include applications using digital 

biomarkers, such as facial and vocal expressivity, to monitor adherence remotely. 
266 
267 5. Retention 
268 
269 AI/ML has the potential to improve the participants’ access to relevant trial information 

by enabling tools, such as AI chatbots, voice assistance, and intelligent search. AI/ML 
271 can also be used to reduce the burden for participants by using passive data collection 
272 techniques and by extracting more information from available data generated during 
273 clinical practice or by study activities (Weissler et al., 2021). Additionally, data from 
274 DHTs and other systems can be used to develop patient profiles to potentially predict 

dropouts and adverse events to ensure participant retention. 
276 
277 6. Site Selection 
278 
279 Trial operational conduct could also be optimized by utilizing AI/ML to help identify 

which sites have the greatest potential for a successful trial and to aid sites in identifying 
281 process gaps. For example, algorithms can be used to evaluate site performance and 
282 to help determine which sites may have a higher risk of running behind schedule based 
283 on data from other trials at that site. 
284 

7. Clinical Trial Data Collection, Management, and Analysis 
286 
287 a. Data Collection 
288 
289 DHTs, such as wireless and smartphone-connected products, wearables, implantables, 

and ingestibles, are increasingly being used in clinical trials to collect objective, 
291 quantifiable, longitudinal, and continuous physiological data.11 In addition, many of 
292 these DHTs enable the use of AI/ML, either as embedded algorithms within the DHT or 

11 See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies 
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will 
represent FDA’s current thinking on this topic. https://www.fda.gov/media/155022/download 
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employed upon the data generated after the data are collected from the DHT, and have 
been used to predict the status of a chronic disease and its response to treatment 
(Stehlik et al., 2020) or to identify novel characteristics of an underlying condition 
(Avram et al., 2020).  AI/ML can be utilized to analyze the large and diverse data 
generated from the continuous monitoring of persons using these technologies. This 
could include using AI/ML to aid in the evaluation of multimodal data and composite 
measures that may combine individual measures collected through multiple DHTs 
(Cohoon & Bhavnani, 2020). 

b. Data Management 

AI/ML can be used for a range of data cleaning and curation purposes, including 
duplicate participant detection and imputation of missing data values (Zhang, Yan, Gao, 
Malin, & Chen, 2020), as well as the ability to harmonize controlled terminology 
across drug development programs. Use of AI/ML could also significantly enhance data 
integration efforts by using supervised and unsupervised learning to help integrate data 
submitted in various formats and perform data quality assessments. Additionally, AI/ML 
can be used for data curation via masking and de-identification of personal identifiable 
information, metadata creation, and search and retrieval of stored data. These 
applications can potentially increase data accuracy and improve the speed at which 
data are prepared for analyses. 

c. Data Analysis 

AI/ML has been used to analyze high volumes of diverse and complex RWD extracted 
from EHRs, medical claims, and disease registries, among other sources. Additionally, 
the use of AI/ML in predictive modeling and counterfactual simulation to inform clinical 
trial designs is being actively explored.  For example, in silico clinical trials utilize 
computational modeling and simulation to evaluate drug candidates using a virtual 
cohort of simulated participants with realistic variability of traits representing the desired 
participant population (Pappalardo, Russo, Tshinanu, & Viceconti, 2019).  AI/ML could 
be employed in these situations to aid in evaluating a vast number of counterfactual 
simulations and to predict trial outcomes before human trials. 

At an even more personalized level, AI/ML can also be used in the context of digital 
twins of patients, an emerging method that could potentially be used in clinical research. 
To create digital twins of patients, AI/ML can be utilized to build in silico representations 
or replicas of an individual that can dynamically reflect molecular and physiological 
status over time (European Medicines Agency, 2022; Laubenbacher, Sluka, & Glazier, 
2021; Schuler et al., 2021). In comparison to a participant in a clinical trial that received 
an investigational treatment, the digital twin could potentially provide a comprehensive, 
longitudinal, and computationally generated clinical record that describes what may 
have happened to that specific participant if they had received a placebo. 

8.  Clinical Endpoint Assessment 
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339 Clinical endpoint assessment is a key part of evaluating safety and efficacy of medical 
interventions in clinical trials. AI/ML-enabled algorithms could detect clusters of signs 

341 and symptoms to identify a potential safety signal, as well as help detect cases with 
342 safety issues in real time (Pierce et al., 2017; Routray et al., 2020). AI/ML could be 
343 used to assist in the assessment of outcomes captured from diverse sources (e.g., 
344 DHTs, social media) during a clinical trial, including those consisting of large amounts of 

data for which manual review may be impractical. 
346 
347 D. Postmarketing Safety Surveillance 
348 
349 For purposes of this paper, pharmacovigilance (PV) refers to the science and activities 

related to the detection, assessment, understanding, and prevention of adverse events 
351 or any other drug-related problems (including medication errors and product quality 
352 issues).12 Postmarketing safety surveillance, or PV activities in the post-approval 
353 period, includes postmarketing safety reporting of adverse events associated with use 
354 of human drug and biological products.  An individual case safety report (ICSR) is used, 

as applicable, for the postmarketing reporting of adverse events to FDA and serves as 
356 an important data source of potential drug safety issues for postmarket safety 
357 surveillance.  The clinical information in ICSRs can include suspect product or products, 

358 and temporal information related to use of the product and occurrence of the adverse 
359 event(s) in the patient’s medical history, clinical course, and outcome. Complete and 

accurate reporting of ICSRs is critical to the understanding of a drug’s safety profile. 
361 For reasons including increases in ICSR volume, AI/ML applications are being explored 
362 to help process and evaluate ICSR submissions within regulatory agencies (Ball & Dal 
363 Pan, 2022; Bate & Hobbiger, 2021). 
364 

1.  Case Processing 
366 
367 There are potential opportunities to use AI/ML for automation during ISCR processing. 
368 The number and complexity of data sources of adverse events for ICSRs have 
369 increased, including from spontaneous reports, clinical trials, EHRs, social media, 

phone calls, emails, literature, patient registries, claims data, and post-approval safety 
371 studies (Beninger, 2020).  The use of AI/ML to detect information from source 
372 documents could help identify adverse events for ICSR submission. For instance, the 
373 use of AI/ML to detect and evaluate drug event associations from literature and to 
374 screen social media for adverse events has been explored (Comfort, Dorrell, Meireis, & 

Fine, 2018; Negi, Pavuri, Patel, & Jain, 2019; S. V. Wang et al., 2017; W. Wang et al., 
376 2011).  
377 
378 After an adverse event is identified from a data source, AI/ML could be used for case 
379 validity, case prioritization, duplicate check, coding, and quality control.  The use of 

AI/ML can help identify whether a case is a valid case, which includes determining 

12 See the guidance for industry Good Pharmacovigilance Practices and Pharmacoepidemiologic 
Assessment (March 2005).  Accessed September 30, 2022. https://www.fda.gov/media/71546/download 
See also, Council for International Organizations of Medical Sciences (CIOMS) Pharmacovigilance 
definition. Accessed September 29, 2022. https://cioms.ch/pharmacovigilance/ 
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381 whether a case contains the minimum reporting requirements, such as an identifiable 
382 patient, suspect drug or biological product, adverse event(s), and identifiable reporter 
383 (Abatemarco et al., 2018; Schmider et al., 2019).  During case intake, to assist in the 
384 prioritization of cases, AI/ML has been used to classify adverse events by expectedness 
385 (whether an adverse event is known and in the product labeling) (Abatemarco et al., 
386 2018; Routray et al., 2020). Automated duplicate checks using AI/ML are being 
387 conducted to identify whether the case is a true duplicate, a follow up version of a prior 
388 case, or a new case (Kassekert 2022). Another area in which AI/ML has been applied 
389 is the coding of adverse events described in ICSRs to structured medical dictionary 
390 terms and for quality control purposes (Ghosh 2020). 
391 
392 2. Case Evaluation 
393 
394 Adverse event cases undergo clinical assessment. Case evaluation includes assessing 
395 the possibility of a causal relationship between the drug and adverse event, as well as 
396 assessing the outcome of the case.  An AI model was developed based on relevant 
397 features used in causality assessments; it was trained, validated, and tested to classify 
398 cases by the probability of a causal relationship between the drug and adverse event 
399 (Comfort et al., 2018).  AI/ML has also been applied to determine seriousness of the 
400 outcome of ICSRs (Routray, et al., 2020), which not only supports case evaluation, but 
401 also the timeliness of individual case submissions that require expedited reporting. 
402 
403 3. Case Submission 
404 
405 Generally, the final step after case processing is the submission of ICSRs.  AI/ML 
406 algorithms have been used to automate reporting rules for submission of ICSRs to FDA. 
407 The reporting of ICSRs is required on an individual basis, as well as in aggregate 
408 (Ghosh et al., 2020). The aggregate reporting of adverse events generally involves the 
409 compilation of safety data for a product that is submitted at regular time intervals as 
410 specified. AI/ML can be used to develop aggregate reports that include multiple 
411 adverse events for particular products that occur within a time period for reporting 
412 purposes (Lewis & McCallum, 2020). 
413 
414 E. Advanced Pharmaceutical Manufacturing13 

415 
416 A critical aspect of drug development includes the methods, facilities, and controls used 
417 in manufacturing, processing, packing, and holding of a drug to help ensure that the 
418 drug meets the requirements of safety and effectiveness, has the identity and strength it 
419 is represented to possess, and meets quality and purity characteristics. Advanced 

13 The examples in this section are based on the review of general published information that projects or 
forecasts how AI/ML may be currently used in the pharmaceutical manufacturing space. In the continued 
spirit of FDA’s recent engagement through the Quality Metrics Feedback Program and CDER’s Emerging 
Technology Program, FDA has been able to solicit valuable feedback demonstrated by industry 
interactions on several AI/ML use cases in the pharmaceutical manufacturing space, such as optimal risk-
based supply chain modeling, business forecasting, process optimization, application of natural language 
processing (NLP) algorithms for complaints reduction, use of predictive analytics for non-conformance 
(NC) reduction, and corrective and preventive action (CAPA) effectiveness. 
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analytics leveraging AI/ML in the pharmaceutical manufacturing industry offers many 
possibilities, including, but not limited to, enhancing process control, increasing 
equipment reliability and throughput, monitoring early warnings or signals that the 
manufacturing process is not in a state of control, detecting recurring problem clusters, 
and preventing batch losses. The use of AI/ML to support pharmaceutical 
manufacturing can be deployed together with other advanced manufacturing 
technologies (e.g., process analytical technology, continuous manufacturing) to achieve 
the desired benefits. AI/ML is an enabler for the implementation of Industry 4.0, a term 
that refers to the fourth industrial revolution that brings together rapidly evolving 
technologies, and could result in a well-controlled, hyper-connected, digitized 
ecosystem and pharmaceutical value chain for the manufacturer (Arden et al., 2021). 
AI/ML could also be used to improve the reliability of the manufacturing supply chain 
through forecasting product demand, analyzing production schedules, estimating and 
mitigating the impact of potential disruptions, and optimizing inventory. Use of AI/ML-
based approaches in pharmaceutical manufacturing can be broadly grouped into the 
areas outlined below that cover the entire drug manufacturing life cycle, from design to 
commercial manufacturing. 

1. Optimization of Process Design 

Digital twins can also be used in process design optimization. In this context, a digital 
twin of a process is a digital replica of the physical process used to better understand, 
analyze, predict, and optimize process performance. The digital twin could be 
especially beneficial for analyzing manufacturing processes characterized by a limited 
amount of development data, where AI/ML models could potentially leverage prior 
knowledge of the product and process (e.g., from previous studies, development 
programs, and scientific literature) to more quickly identify the optimal processing 
parameters, thus reducing design time and waste. 

2. Advanced Process Control 

Process controls have been implemented in pharmaceutical manufacturing for several 
decades. Traditional process controls maintain input process parameters at set points, 
but are not capable of simultaneously changing multiple input parameters to maintain 
the output parameters at desired levels to optimize the process. On the other hand, 
advanced process control (APC) allows dynamic control of the process to achieve a 
desired output (Huang et al., 2021). AI/ML techniques such as neural networks, with 
real-time process data as inputs, can be used to implement APC. These methods can 
also be used to develop process controls that can predict whether a process is 
performing under a state of control by using AI/ML tools in combination with real-time 
sensor data, including, in conjunction with smart monitoring of production lines, to 
improve existing manufacturing line efficiency and output. In the near term, APC 
approaches that combine physics and chemistry knowledge with AI/ML techniques are 
expected to be increasingly adopted and have already been reported by several 
pharmaceutical manufacturers (National Academies of Sciences, 2021). In these APC 
applications, high quality model inputs inform process understanding and, model 
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structure. These robust inputs, when combined with data-driven modeling, allow 
derivation of model parameters.  These models leverage data required for model 
development while improving model robustness. 

3. Smart Monitoring and Maintenance 

Manufacturing processes can be automated and monitored in real time, leading to more 
efficient inventory management with shorter lead times and increased production 
output, without impacting product quality. AI/ML methods can be used to monitor 
equipment and detect deviations from normal performance that can trigger maintenance 
activities, thus reducing process downtime. Another example is the use of computer 
vision-based quality control that uses images (e.g., images of packaging, labels, or 
glass vials) that are analyzed by AI/ML-based software to detect deviations and to 
ensure images match the requirements of a given quality attribute of a product. 
Augmenting human visual inspection of drug products and packaging with such AI/ML-
based methods can improve the accuracy and efficiency of visual inspection controls. 

4. Trend Monitoring 

AI/ML can be used in many ways to make manufacturing more effective and efficient 
with faster output, less waste, more informed decision-making, and enhanced quality 
control. Current practice for the analysis of deviations in the process is primarily done 
by quality personnel and relevant subject matter experts. AI/ML could be utilized to 
assist in examination of deviation reports that mostly contain large volumes of data or 
text to analyze manufacturing-related deviation trends, cluster problem areas, and 
prioritize areas for proactive continual improvement. This offers the advantage of 
expediting the process of identifying root causes, as solely manual review of deviation 
trends can be very time-consuming. AI/ML methods integrated with process 
performance (Ppk) and process capability (Cpk) metrics can be used to proactively 
monitor manufacturing operations for trends and out-of-control events, and predict 
thresholds for triggering CAPA effectiveness evaluations. 

F. FDA Experience with AI/ML for Drug Development 

FDA recognizes the increased use of AI/ML throughout the drug development life cycle 
and its potential to accelerate the development of safe and effective drugs. AI/ML is 
increasingly integrated in areas where FDA is actively engaged, including clinical trial 
design, DHTs, and RWD analytics. Over the last few years, FDA has seen a rapid 
growth in the number of submissions that reference AI/ML. Submissions across drug 
and biological product applications that include AI/ML have increased over the last few 
years to more than 100 submissions in 2021 (Q. Liu et al., 2022).  These submissions 
cut across a range of therapeutic areas, and the uses of AI/ML within the submissions 
cover the many different areas of the drug development process highlighted in this 
section, from drug discovery and clinical trial enrichment to endpoint assessment and 
postmarket safety surveillance. Inclusion of AI/ML in the clinical development/research 
phase represents the most common stage for AI/ML uses in submissions. 
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512 
513 One of the ways FDA has been supporting the development of innovative and robust 
514 AI/ML is through the establishment of the CDER AI Steering Committee (AISC), which 
515 coordinates efforts around AI/ML uses across therapeutic development. Leveraging its 
516 commitment to advancing innovative approaches and promoting collaborative efforts 
517 across the Agency, CDRH, including the DHCoE, have provided consults for drug 
518 submissions that involve AI/ML, and are developing a framework for AI/ML-based 
519 devices, including predetermined change control plans for devices incorporating 
520 AI/ML,14 as well as a foundation for Good Machine Learning Practices for medical 
521 device development.15 In addition, FDA has organized various workshops16,17 and held 
522 a Patient Engagement Advisory Committee (PEAC) meeting on DHT and AI/ML-related 
523 topics18 and has fostered regulatory science research, including on robustness, user-
524 centered transparency, and bias identification and management, through external 
525 academic and clinical partnerships to evaluate the safety and effectiveness of emerging 
526 AI/ML products.19 

527 
528 Additionally, CDER has developed the Innovative Science and Technology Approaches 
529 for New Drugs (ISTAND) Pilot Program, which is designed to expand drug 
530 development tool (DDT) types included in the DDT qualification programs, including 
531 tools that leverage DHTs. Applications of AI/ML may represent novel DDTs or could be 
532 used to aid in the interpretation and analysis of traditional DDTs (such as biomarkers 
533 or clinical outcome assessments), potentially speeding novel therapeutics to patients 
534 by enhancing the evidence available for decision-making.20 In the area of model-
535 informed drug development (MIDD), FDA’s CDER and CBER have established a MIDD 
536 Pilot Program to facilitate the development and application of exposure-based, 
537 biological, and statistical models derived from nonclinical and clinical data sources.21 In 

14 Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) – Discussion Paper and Request for Feedback, April 2019. 
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-
Learning-Discussion-Paper.pdf 
15 Good Machine Learning Practice for Medical Device Development: Guiding Principles, October 2021. 
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles 
16 See the Virtual Public Workshop – Transparency of Artificial Intelligence/Machine Learning-enabled 
Medical Devices, October 14, 2021. https://www.fda.gov/medical-devices/workshops-conferences-
medical-devices/virtual-public-workshop-transparency-artificial-intelligencemachine-learning-enabled-
medical-devices 
17 See the Public Workshop – Evolving Role of Artificial Intelligence in Radiological Imaging, February 
25–26, 2020. https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-
workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020 
18 See the Patient Engagement Advisory Committee Meeting Announcement, October 22, 2020. 
https://www.fda.gov/advisory-committees/advisory-committee-calendar/october-22-2020-patient-
engagement-advisory-committee-meeting-announcement-10222020-10222020 
19 See CERSI research projects, October 2022. https://www.fda.gov/science-research/advancing-
regulatory-science/cersi-research-projects 
20 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools 
(November 2020). https://www.fda.gov/media/133511/download 
21 See the Model-Informed Drug Development Paired Meeting Program, October 2022. 
https://www.fda.gov/drugs/development-resources/model-informed-drug-development-pilot-program 
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538 the context of MIDD, AI/ML could be employed to help improve clinical trial simulations, 
539 optimize dose selection or estimations, or enhance predictive or mechanistic safety 
540 evaluations. 
541 
542 In the area of postmarket safety surveillance, the FDA’s Sentinel Initiative, including 
543 CDER’s Sentinel System,22 CBER’s Biologics Effectiveness and Safety (BEST) 
544 system,23 and CDRH’s National Evaluation System for health Technology (NEST)24 

545 efforts, are exploring AI/ML approaches to improve existing systems. The FDA outlined 
546 its goals for using linked claims and EHR data supported by advanced analytics in the 
547 5-year Sentinel System strategic plan.25 The Sentinel System Innovation Center has 
548 outlined a four-pronged approach to implement this plan by incorporating emerging data 
549 science innovations and EHR data for medical product safety surveillance: (1) data 
550 infrastructure, (2) feature engineering, (3) causal inference, and (4) detection analytics 
551 (Desai et al., 2021).  Examples of AI/ML applications in this approach include natural 
552 language processing (NLP) and automated feature extraction from unstructured EHR 
553 clinical notes for computable phenotyping and improved confounding adjustment from 
554 EHR-based variables using advanced statistical and ML approaches, such as 
555 algorithms created to enhance performance or “Super Learner” and targeted maximum 
556 likelihood estimation (Naimi & Balzer, 2018). 
557 
558 CBER’s BEST system is designed to provide better data sources, methods, tools, 
559 expertise, and infrastructure to conduct surveillance and epidemiological studies.26 Part 
560 of this program is an effort to use AI/ML methods to analyze EHRs to predict or better 
561 understand adverse events associated with the use of biological products and other 
562 products that CBER regulates.  This work may also enhance FDA’s understanding of 
563 the use of AI/ML methods for generating real-world evidence about product efficacy. 
564 
565 CDER is also exploring the application of AI to enhance the evaluation of ICSRs 
566 submitted to the FDA Adverse Event Reporting System (FAERS) (Ball & Dal Pan, 
567 2022). The Information Visualization Platform (InfoViP) was developed with AI/ML to 
568 detect duplicate ICSRs, classify ICSRs by level of information quality, and derive 
569 visualization of the timeline of clinical events to aid in analysis of reported adverse 
570 events (Kreimeyer et al., 2022; Kreimeyer et al., 2021; Spiker et al., 2020). AI/ML 
571 methods have been investigated to automate the identification of adverse events in drug 
572 product labeling to support safety reviewers in the triaging of ICSRs to facilitate the 
573 identification of unknown or unexpected safety issues (Bayer et al., 2021; Ly et al., 
574 2018).  Another AI-based tool that focuses on drug product labeling and is currently in 

22 See FDA’s Sentinel Initiative, December 2022. https://www.fda.gov/safety/fdas-sentinel-initiative 
23 See the CBER Biologics Effectiveness and Safety (BEST) System, March 2022. 
https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/cber-biologics-effectiveness-
and-safety-best-system 
24 See the National Evaluation System for health Technology (NEST), October 2019. 
https://www.fda.gov/about-fda/cdrh-reports/national-evaluation-system-health-technology-nest 
25 See the FDA Sentinel System Five-Year Strategy, January 2019. 
https://www.fda.gov/media/120333/download 
26 See the CBER BEST System, March 2022. https://www.fda.gov/vaccines-blood-biologics/safety-
availability-biologics/cber-biologics-effectiveness-and-safety-best-system 
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580
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590

595

600

605

610

615

use is the Computerized Labeling Assessment Tool (CLAT), which serves to automate 
576 the review of label and labeling (e.g., prescribing information, carton and container 
577 labeling).  NLP and ML are also being explored to classify free-text narratives in FAERS 
578 ICSRs into structured medical dictionary medication error terminologies to support the 
579 human review of coding quality. Additionally, through the FDA Quality Metrics Reporting 

Program,27 CDER’s Emerging Technology Program, and CBER’s Advanced 
581 Technologies Team (CATT) Program,28 FDA has been able to engage industry and 
582 gain valuable feedback on AI/ML use cases in pharmaceutical manufacturing. 
583 
584 The FDA also utilizes mechanisms such as a Broad Agency Announcement to solicit 

extramural proposals that address emerging regulatory science priorities, including 
586 leveraging external expertise and infrastructure to provide insight on the methods used 
587 to integrate and evaluate AI/ML in drug development. 
588 
589 III. Considerations for the Use of AI/ML in Drug Development 

591 As shown in Section II, AI/ML has been applied to a broad range of drug development 
592 activities and continues to evolve. The use of AI/ML has the potential to accelerate the 
593 drug development process and make clinical trials safer and more efficient. However, it 
594 is important to assess whether the use of AI/ML introduces specific risks and harms. 

For example, AI/ML algorithms have the potential to amplify errors and preexisting 
596 biases present in underlying data sources and, when the findings are extrapolated 
597 outside of the testing environment, raise concerns related to generalizability and ethical 
598 considerations. Additionally, an AI/ML system may exhibit limited explainability due to 
599 its underlying complexity or may not be fully transparent for proprietary reasons. These 

concerns have resulted in a focus on developing standards for trustworthy AI that 
601 address specific characteristics in areas such as explainability, reliability, privacy, 
602 safety, security, and bias mitigation.  This section begins with an overview of 
603 considerations and good practices for the general application of AI/ML and ends with 
604 questions to solicit feedback from stakeholders on these considerations and to further 

identify potential good practices in the context of drug development. This will aid FDA in 
606 further identifying opportunities and challenges with utilizing AI/ML throughout the drug 
607 development process. 
608 
609 A. Overarching Standards and Practices for the Use of AI/ML 

611 There has been an increased commitment by the Federal Government and the 
612 international community to facilitate AI innovation and adoption, which includes 
613 promoting trustworthy and ethical AI (Exec. Order No. 13859, Maintaining American 
614 Leadership in Artificial Intelligence, February 11, 2019; Exec. Order No. 13960, 

Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government, 
616 December 3, 2020; Lander & Nelson, October 22, 2021; Notice of Request for 

27 See the Quality Metrics for Drug Manufacturing, October 2022. 
https://www.fda.gov/drugs/pharmaceutical-quality-resources/quality-metrics-drug-manufacturing 
28 See the CBER Advanced Technologies Team (CATT) Program, June 27, 2019. 
https://www.fda.gov/vaccines-blood-biologics/industry-biologics/cber-advanced-technologies-team-catt 
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617 Information on Public and Private Sector Uses of Biometric Technologies, October 8, 
618 2021; Organisation for Economic Co-operation and Development, 2019; Vought, 2020). 
619 As a result, efforts for the development of cross-sector and sector-specific standards to 
620 facilitate the technological advancement of AI have rapidly increased in both domestic 
621 and international forums. For example, in August 2019, the National Institute for 
622 Standards and Technology (NIST) released “U.S. Leadership in AI: A Plan for Federal 
623 Engagement in Developing Technical Standards and Related Tools” to help ensure the 
624 use of technical standards and to advance innovation, trust, and confidence in the use 
625 of AI (National Institute of Standards and Technology, 2019). The plan identified 
626 several areas of focus for AI standards development, including data and knowledge, 
627 performance testing and reporting methodology, risk management, and trustworthiness, 
628 among others. Other standards organizations, such as the International Organization 
629 for Standardization (ISO), the Institute of Electrical and Electronics Engineers (IEEE), 
630 and the International Electrotechnical Commission (IEC), are also developing relevant 
631 AI/ML standards and work products addressing fundamental issues of data quality, 
632 explainability, and performance, in addition to examining applications that are specific to 
633 certain industries. The Verification and Validation (V&V 40) risk-informed credibility 
634 assessment framework was initially developed by the American Society of Mechanical 
635 Engineers (ASME) for the assessment of credibility of computational models used for 
636 medical devices (American Society of Mechanical Engineers, 2018) and was later 
637 adopted into model-informed drug development29 (Kuemmel et al., 2020; Viceconti et 
638 al., 2021).  As AI/ML is also used for computational models, the V&V 40 framework 
639 potentially serves to inform whether the AI/ML model is credible for use in drug 
640 development.30 The V&V 40 Standard, which is not specific to AI/ML and does not 
641 specify activities or define criteria required to establish model credibility for a particular 
642 context of use or application, has been adapted for medical devices and for model-
643 informed drug development.31,32 

644 
645 In addition to the V&V 40 Standard for evaluating the predictive capability of 
646 computational models for medical devices, FDA, Health Canada, and the United 
647 Kingdom’s Medicines and Healthcare products Regulatory Agency (MHRA) jointly 
648 published 10 guiding principles to inform the development of Good Machine Learning 
649 Practices (GMLP) for medical devices that use AI/ML.33 The guiding principles include 

29 Promoting Innovation in Medical Product Assessment: A Risk-based Framework for Evaluating 
Computational Models for Regulatory Decision-Making, October 2020. https://www.fda.gov/drugs/news-
events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-
evaluating-computational-models 
30 A V&V 70 Subcommittee has been established for Verification and Validation of Machine Learning. 
31 See the draft guidance for industry and FDA staff Assessing the Credibility of Computational Modelling 
Simulation in Medical Device Submissions (December 2021). When final, this guidance will represent 
FDA’s current thinking on this topic. https://www.fda.gov/media/154985/download 
32 Promoting Innovation in Medical Product Assessment: A Risk-based Framework for Evaluating 
Computational Models for Regulatory Decision-Making, October 2020. https://www.fda.gov/drugs/news-
events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-
evaluating-computational-models 
33 Good Machine Learning Practice for Medical Device Development: Guiding Principles, October 2021. 
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles 
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650 adopting a total product life cycle approach in which multidisciplinary expertise is 
651 leveraged throughout product development, with an in-depth understanding of how the 
652 model is integrated into the clinical workflow. The principles also emphasize the 
653 importance of adequate representation of age, gender, sex, race, and ethnicity within 
654 the clinical study population to manage bias, improve generalizability, and provide 
655 sufficient transparency with clear and essential information, such as the product’s 
656 intended use and indications, the data used to test and train the model, and known 
657 limitations. Finally, these GMLP highlight the importance of monitoring deployed 
658 models for performance while managing the risk of model retraining. FDA’s CDRH had 
659 previously discussed the role of GMLP for medical devices, and in 2019 issued a 
660 proposed framework for modifications to AI/ML-based SaMD. The framework proposed 
661 a predetermined change control plan mechanism—whereby a sponsor can proactively 
662 specify intended modifications to device software incorporating AI/ML and the methods 
663 that will be used to ensure their safety and effectiveness—thereby laying the foundation 
664 for AI/ML-enabled devices with improved capacity for adaptation.34 

665 
666 Although the standards and practices described in this section were not tailored 
667 specifically for drug development, the utility and applicability of these standards to drug 
668 development and the development of medical devices intended to be used with drugs, 
669 will be explored to ensure alignment and consistency. 
670 
671 B. Discussion of Considerations and Practices for AI/ML in Drug Development 
672 
673 Informed by the diverse applications of AI/ML in drug development (see Section II), 
674 FDA is considering approaches to provide regulatory clarity around the use of AI/ML in 
675 drug development, supported by an expanding body of knowledge and a clear 
676 appreciation of the opportunities and challenges with utilizing AI/ML in drug 
677 development. While certain standards and practices outlined in Section III.A can 
678 potentially be adapted to address the use of AI/ML in the context of drug development, 
679 the use of AI/ML in drug development may raise specific challenges that could highlight 
680 additional considerations. As noted above, this document is not FDA guidance or policy 
681 and does not endorse any specific approaches for the use of AI/ML in drug 
682 development.  However, the feedback and future discussions with stakeholders can 
683 help inform future regulatory activities. 
684 
685 Adapting the overarching principles of the General Accountability Office AI 
686 accountability framework35 below, FDA’s CDER, CBER, CDRH, including DHCoE, aim 
687 to initiate a discussion with stakeholders and solicit feedback on three key areas in the 
688 context of AI/ML in drug development: 
689 

34 Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) – Discussion Paper and Request for Feedback, April 2019. 
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-
Learning-Discussion-Paper.pdf 
35 See Artificial Intelligence: An Accountability Framework for Federal Agencies and Other Entities (June 
2021). https://www.gao.gov/assets/gao-21-519sp.pdf 
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690 (1) human-led governance, accountability, and transparency; 
691 
692 (2) quality, reliability, and representativeness of data; and 
693 
694 (3) model development, performance, monitoring, and validation. 
695 
696 In each of these areas, a risk-based approach could include measures commensurate 
697 with the level of risk posed by the specific context of use for AI/ML. 
698 

(1) Human-led governance, accountability, and transparency 

Human-led AI/ML governance can help ensure adherence to legal and ethical values, 
where accountability and transparency are essential for the development of 
trustworthy AI. Such governance and clear accountability may extend across the 
spectrum of planning, development, use, modification, and discontinuation (as 
applicable) of AI/ML in the drug development process. 

As part of governance, a risk management plan that considers the context of use may 
be applied to identify and mitigate risks.  This approach can help guide the level of 
documentation, transparency, and explainability, with tracking and recording of key 
steps and decisions, including the rationale for any deviations and procedures that 
enable vigilant oversight and auditing.  Transparency and documentation can provide 
critical insight on the initial planning, development, function, and any modifications of 
the AI/ML in the specific context of use, while explainability can provide 
accompanying evidence or reason for the outputs. 

Questions: 

• In what specific use cases or applications of AI/ML in drug development are 
there the greatest need for additional regulatory clarity? 

• What does transparency mean in the use of AI/ML in drug development (for 
example, transparency could be considered as the degree to which appropriate 
information about the AI/ML model—including its use, development, 
performance, and, when available, logic—is clearly communicated to 
regulators and/or other stakeholders)?36 

• In your experience, what are the main barriers and facilitators of transparency 
with AI/ML used during the drug development process (and in what context)? 

• What are some of the good practices utilized by stakeholders for providing risk-
based, meaningful human involvement when AI/ML is being utilized in drug 
development? 

36 Adapted from ISO/IEC JTC1/SC42 DIS 25059 (draft).  
https://www.iso.org/standard/80655.html?browse=tc 
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• What processes are in place to enhance and enable traceability and 
auditability? 

• How are pre-specification activities managed, and changes captured and 
monitored, to ensure the safe and effective use of AI/ML in drug development? 

(2) Quality, reliability, and representativeness of data 

AI/ML is particularly sensitive to the attributes or characteristics of the data used for 
training, testing, and validation. Although not unique to AI/ML, missing data, bias, and 
data drift are typically important considerations.  Ensuring data quality, reliability, and 
that the data are fit for use (i.e., relevant for the specific intended use and population) 
can be critical. Potential data-related issues to consider include: 

Bias: AI/ML can potentially amplify preexisting biases that exist in the underlying 
input data. NIST published a document characterizing three categories of bias 
(human, systemic, and statistical/computational) and “how they may occur in the 
commission, design, development, and deployment of AI technologies that can be 
used to generate predictions, recommendations, or decisions (e.g., algorithmic 
decision systems), and how AI systems may create societal harms.”37 

Integrity:  The completeness, consistency, and accuracy of data.38 

Privacy and security: The protection and privacy of data, linked to data 
classifications and the technical features of the system. 

Provenance:  Record trail that accounts for the origin of a piece of data (in a 
database, document, or repository) together with an explanation of how and why it 
got to the present place.39 Provenance describes “the metadata, or extra 
information about data, that can help answer questions such as who created the 
data and when.”40 

Relevance:  Adequate data are available and are appropriate for the intended use. 

Replicability:  Obtaining consistent results across studies aimed at answering the 
same question, each of which has obtained its own data.41 It is important to clarify 
data access early in the process. 

37 NIST Special Publication 1270, March 2022. https://doi.org/10.6028/NIST.SP.1270 
38 For additional considerations related to data integrity see the guidance for industry Data Integrity and 
Compliance with Drug CGMP (December 2018). https://www.fda.gov/media/119267/download 
39 Encyclopedia of Database Systems, definition of data provenance.  
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-39940-9_1305 
40 21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification 
Program (March 2019). https://www.federalregister.gov/documents/2019/03/04/2019-02224/21st-century-
cures-act-interoperability-information-blocking-and-the-onc-health-it-certification 
41 Ibid. 
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Reproducibility:  Obtaining consistent results using the same input data, 
computational steps, methods and code, and conditions of analysis42 (while not 
confirming validity, the transparency required to demonstrate reproducibility 
permits evaluation of the validity of design and operational decisions (S. V. Wang 
et al., 2017)). 

Representativeness: Confidence that a sample from which evidence is generated 
is sufficiently similar to the intended population. In the context of patient 
experience data, representativeness includes the extent to which the elicited 
experiences, perspectives, needs, and priorities of the sample are sufficiently 
similar to those of the intended patient population.43 

Questions: 

• What additional data considerations exist for AI/ML in the drug development 
process? 

• What practices are developers, manufacturers, and other stakeholders 
currently utilizing to help assure the integrity of AI/ML or to address issues, 
such as bias, missing data, and other data quality considerations, for the use of 
AI/ML in drug development? 

• What are some of the key practices utilized by stakeholders to help ensure 
data privacy and security? 

• What are some of the key practices utilized by stakeholders to help address 
issues of reproducibility and replicability? 

• What processes are developers using for bias identification and management? 

(3) Model development, performance, monitoring, and validation 

The use of the model may be important to consider in evaluating AI/ML model 
development and performance, including through practices of pre-specification steps 
and clear documentation of criteria for developing and assessing models.  It may also 
be important to consider the model risk and credibility; model risk drives the selection 
of credibility goals and activities.44 Model risk is determined by two factors, which are 

42 National Academies of Sciences, Engineering, and Medicine, 2019, Reproducibility and Replicability in 
Science. https://doi.org/10.17226/25303 
43 See discussion document for Patient-focused Drug Development Public Workshop Collecting 
Comprehensive and Representative Input, December 2017. 
https://www.fda.gov/media/109179/download 
44 Credibility refers to trust in the predictive capability of a computational model for a particular context of 
use (Kuemmel et al., 2020). This includes steps to document performance and approaches to measure 
uncertainty at the component level (e.g., model and non-level components, including metrics and 

20 

https://doi.org/10.17226/25303
https://www.fda.gov/media/109179/download


 

 

     
   
    

 
   

    
  

    
   

 
        

     

      
   

    
   

     
   

     
  

 
    

  
  

    
   

    
    

    
 

    
  

     
  

  
 

 
    

  

 
 

   
    

 
 

    

shaped by the context of use: model influence (the weight of the model in the totality 
of evidence for a specific decision) and decision consequence (the potential 
consequences of a wrong decision). 

In balancing performance and explainability, it may be important to consider the 
complexity of the AI/ML model. In situations where complex models (e.g., artificial 
neural network models) are determined to have similar performance, there may be 
overall advantages to selecting the more traditional and parsimonious (i.e., fewer 
parameters) model. 

It may also be important to monitor and document monitoring efforts of the AI/ML 
model to ensure it is reliable, relevant, and consistent over time. This includes 
documentation of the results of monitoring and any corrective action taken to ensure 
that the AI/ML produces intended results. Subsequent assessments (e.g., postmarket 
safety monitoring, surveillance) can provide valuable feedback on processes and real-
world model performance. Real-world model performance includes applications that 
may be supported by collection and monitoring of RWD (e.g., electronic health 
records, product and disease registries). Potential re-training based on real-world 
performance could provide important insights to model performance, and following 
such re-training, it may be important to monitor and document the AI/ML model to 
appropriately manage risks. 

Data considerations also include providing the details of the training dataset utilized to 
develop the AI/ML model, along with the performance, when employing independent, 
external testing data to support verification and validation (“external validity”).  It is 
generally important for data of sufficient quality for the particular context of use to be 
representative of the population where the AI/ML method will be utilized. It is 
important to help ensure AI/ML models are validated to produce results that are 
credible for the model’s use. Credibility activities include verification of the software 
code and calculations, validation of the model, and evaluation of the applicability of 
validation assessments to the context of use.  These activities include considerations 
of measuring the level of uncertainty of the model predictions.  Upon completion of 
credibility activities, an assessment can be made to determine whether the model is 
sufficiently credible for its use and whether the model may be acceptable for a given 
regulatory purpose. 

Questions: 

• What are some examples of current tools, processes, approaches, and best 
practices being used by stakeholders for: 

assessing performance and outcome of each component) and system level (e.g., methods for 
assessment, performance metrics, and outcomes), where feasible. Demonstration of credibility often 
includes a risk-based approach, where uses presenting the highest risk generally require the greatest 
standard of evidence, with a gradient of evidence needed based on the associated risk (i.e., informing 
early-stage drug development for non-serious medical condition versus evaluating drug safety and 
effectiveness for critical medical condition). 
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- Documenting the development and performance of AI/ML models that can 
be applied in the context of drug development (e.g., CONSORT-AI (Liu et 
al., 2020) and SPIRIT-AI (Cruz Rivera et al., 2020))? 

- Selecting model types and algorithms for a given context of use? 

- Determining when to use specific approaches for validating models and 
measuring performance in a given context of use (e.g., selecting relevant 
success criteria and performance measures)? 

- Evaluating transparency and explainability and increasing model 
transparency? 

- Addressing issues of accuracy and explainability (e.g., scenarios where 
models may provide increased accuracy, while having limitations in 
explainability)? 

- Selecting open-source AI software for AI/ML model development?  What 
are considerations when using open-source AI software? 

- The use of RWD performance in monitoring AI/ML?  

• What practices and documentation are being used to inform and record data 
source selection and inclusion or exclusion criteria? 

• In what context of use are stakeholders addressing explainability, and how 
have you balanced considerations of performance and explainability? 

• What approaches are being used to document the assessment of uncertainty 
in model predictions, and how is uncertainty being communicated?  What 
methods and standards should be developed to help support the assessment 
of uncertainty? 

699 
700 As outlined above, many of the overarching principles and standards related to the 
701 characteristics of trustworthy AI can help inform considerations or key practice areas for 
702 the application of AI/ML in the context of drug development.  In addition to meeting 
703 current requirements to support regulatory decision-making regarding a drug’s safety 
704 and effectiveness, the use of AI/ML in drug development raises challenges related to 
705 human-led AI/ML governance, accountability, and transparency; data considerations; 
706 and model development, performance, monitoring, and validation.  Transparency and 
707 documentation across the entire product life cycle can help build trust in the use of 
708 AI/ML. In this regard, it may be important to consider pre-specification and 
709 documentation of the purpose or question of interest, context of use, risk, and 
710 development of AI/ML. While not unique to the use of AI/ML in drug development, there 
711 are also a broad range of data quality, relevance, and reliability-related considerations. 
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712 Related to the area of model development, performance, monitoring, and validation, the 
713 V&V 40 risk-informed credibility assessment framework may be a helpful guide when 
714 considering the specific use for AI/ML.  In general, use of a risk-based approach may 
715 guide the level of evidence and record keeping needed for the verification and validation 
716 of AI/ML models for a specific context of use. Engagement with the FDA early in the 
717 process can also help inform and address these considerations. 
718 
719 IV. Next Steps: Engagement and Collaboration 
720 
721 The release of this initial discussion paper is part of a broader effort to communicate 
722 with a range of stakeholders and to explore the relevant considerations for the use of 
723 AI/ML in the development of human drugs and biological products.  Coupled with this 
724 document, FDA has included a series of questions for feedback, and a workshop with 
725 stakeholders is planned to provide an opportunity for further engagement. The FDA will 
726 also provide several other mechanisms to engage with stakeholders, sponsors, and 
727 developers on this topic, and these can be utilized to address questions before 
728 conducting a study that utilizes AI/ML. In addition to formal meetings where these 
729 methods can be discussed, the Critical Path Innovation Meetings (CPIM),45 ISTAND 
730 Pilot Program,46 Emerging Technology Program,47 and Real-World Evidence Program48 

731 meetings are examples of additional avenues for communicating and discussing a 
732 relevant AI/ML methodology or technology and improving efficiency and quality in drug 
733 development.  Additionally, communication and engagement with patients and the 
734 public regarding considerations for AI/ML in drug development is critical to ensure 
735 patient-centered approaches and policies. 
736 
737 Building on this discussion paper, FDA will continue to solicit feedback and engage a 
738 broad group of stakeholders to further discuss considerations for utilizing AI/ML 
739 throughout the drug development life cycle. These discussions and future 
740 collaborations with stakeholders may provide a foundation for a future framework or 
741 guidance. 

45 See CPIM, November 11, 2022. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-
entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim 
46 See the ISTAND Pilot Program, February 10, 2021. https://www.fda.gov/drugs/drug-development-tool-
ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-
program 
47 See Emerging Technology Program, February 22, 2022. https://www.fda.gov/about-fda/center-drug-
evaluation-and-research-cder/emerging-technology-program 
48 See Framework for FDA’s Real World Evidence Program, April 14, 2020. 
https:/fda.gov/media/120060/download 
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742 Glossary 
743 
744 Accuracy: The level of agreement between the measured value and the true value of 
745 the clinical event or characteristic. 
746 
747 Artificial Intelligence (AI): A branch of computer science, statistics, and engineering 
748 that uses algorithms or models to perform tasks and exhibit behaviors such as learning, 
749 making decisions, and making predictions.49 

750 
751 Biomarker: A defined characteristic that is measured as an indicator of normal 
752 biological processes, pathogenic processes, or biological responses to an exposure or 
753 intervention, including therapeutic interventions. Biomarkers may include molecular, 
754 histologic, radiographic, or physiologic characteristics. A biomarker is not a measure of 
755 how an individual feels, functions, or survives.50 

756 
757 Clinical Outcome Assessment (COA): A measure that describes or reflects how a 
758 patient feels, functions, or survives. There are four types of COAs: patient-reported 
759 outcome, observer-reported outcome, clinician-reported outcome, and performance 
760 outcome.51 

761 
762 Context of Use: A statement that fully and clearly describes the way AI/ML is to be 
763 used and the drug development-related purpose of the use.52 

764 
765 Controlled Terminology: A finite set of values (e.g., codes, text, numeric) that 
766 represent the only allowed values for a data item. Generally, controlled terminology 
767 standards specify the key concepts that are represented as definitions, preferred terms, 
768 synonyms, and code systems.53 

769 
770 Decentralized Clinical Trial: A clinical investigation where some or all of the trial-
771 related activities occur at a location separate from the investigator’s location.54 

772 
773 Digital Health Technology (DHT): A system that uses computing platforms, 
774 connectivity, software, and/or sensors for health care and related uses.  These 
775 technologies span a wide range of uses, from applications in general wellness to 
776 applications as a medical device.  They include technologies intended for use as a 

49 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
50 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016. 
https://www.ncbi.nlm.nih.gov/books/NBK338448 
51 See Clinical Outcome Assessment (COA), December 2020. https://www.fda.gov/about-fda/clinical-
outcome-assessment-coa-frequently-asked-questions 
52 CDISC Glossary, 2022. https://evs.nci.nih.gov/ftp1/CDISC/Glossary/CDISC%20Glossary.html 
53 Ibid. 
54 See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies 
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will 
represent FDA’s current thinking on this topic. https://www.fda.gov/media/155022/download 
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777 medical product, in a medical product, or as an adjunct to other medical products 
778 (devices, drugs, and biologics). They may also be used to develop or study medical 
779 products. Data captured by DHTs can often be transmitted directly to investigators, 
780 sponsors, and/or other authorized parties, with the capability to maintain blinding or 
781 masking when appropriate. The ability to transmit data remotely increases opportunities 
782 for patients to participate in clinical investigations at locations remote from the 
783 investigator’s site.55. 
784 
785 Digital Twins: An integrated multi-physics, multiscale, probabilistic simulation of a 
786 complex system that uses the best available data, sensors, and models to mirror the 
787 behavior of its corresponding twin. A fully developed digital twin consists of a physical 
788 component (e.g., unit operations), a virtual component, and automated data 
789 communications between the two. The development and application of digital twins are 
790 now being extended to manufacturing and complex products to assess sensitivities of 
791 material attributes and process parameters, reliability of control strategies, and 
792 effectiveness of mitigation plans for potential disturbances.56 

793 
794 Drug Development Tool (DDT): A biomarker, COA, or any other method, material, or 
795 measure determined to aid drug development and regulatory review. Animal models 
796 developed to be used for product development under the Animal Rule57 have been 
797 determined by FDA to be DDTs under section 507 of the FD&C Act.58 

798 
799 Endpoint: A precisely defined variable intended to reflect an outcome of interest that is 
800 statistically analyzed to address a particular research question. A precise definition of 
801 an endpoint typically specifies the type of assessments made, the timing of those 
802 assessments, the assessment tools used, and possibly other details, as applicable, 
803 such as how multiple assessments within an individual are to be combined.59 

804 
805 Machine Learning (ML): A subset of AI that allows ML models to be developed by ML 
806 training algorithms through analysis of data, without being explicitly programmed.60 

807 
808 Natural Language Processing (NLP): The branch of computer science, specifically 
809 the branch of AI, concerned with giving computers the ability to understand text and 
810 spoken words in much the same way human beings can.61 

55 Ibid. 
56 See Modeling & Simulation at FDA, November 16, 2022. https://www.fda.gov/science-research/about-
science-research-fda/modeling-simulation-fda 
57 See Animal Rule Approvals, June 2022. https://www.fda.gov/drugs/nda-and-bla-approvals/animal-rule-
approvals 
58 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools 
(November 2020). https://www.fda.gov/media/133511/download 
59 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016. 
https://www.ncbi.nlm.nih.gov/books/NBK338448 
60 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
61 “What is natural language processing?” Accessed September 8, 2022. 
https://www.ibm.com/cloud/learn/natural-language-processing#toc-what-is-na-jLju4DjE 
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811 
812 Neural Network: A commonly used form of AI/ML that is used for categorization 
813 applications and has been loosely likened to the way that neurons in the brain process 
814 signals. Neural networks typically consist of at least three layers of neurons: input layer 
815 (which receives information), hidden layer (responsible for extracting patterns and 
816 conducting the internal processing), and output layer (produces and presents the final 
817 network output).62 

818 
819 Real-World Data (RWD): The data relating to patient health status and/or the delivery 
820 of health care routinely collected from a variety of sources. Examples of RWD include 
821 data derived from electronic health records (EHRs); medical claims and billing data; 
822 data from product and disease registries; patient-generated data, including from in-
823 home-use settings; and data gathered from other sources that can inform on health 
824 status, such as mobile devices.63 

825 
826 Real-World Evidence (RWE): The clinical evidence about the usage and potential 
827 benefits or risks of a medical product derived from analysis of RWD.  RWD sources 
828 (e.g., registries, collections of EHRs, administrative and medical claims databases) can 
829 be used for data collection and, in certain cases, to develop analysis infrastructure to 
830 support many types of study designs to develop RWE, including, but not limited to, 
831 randomized trials (e.g., large simple trials, pragmatic clinical trials) and observational 
832 studies (prospective or retrospective).64 

833 
834 Recurrent Neural Network: A type of artificial neural network that uses sequential 
835 data or time series data to exhibit temporal dynamic behavior. These algorithms are 
836 commonly used for ordinal or temporal problems, such as language translation, NLP, 
837 speech recognition, and image captioning.65 

62 See the Executive Summary for the Patient Engagement Advisory Committee Meeting: Artificial 
Intelligence and Machine Learning in Medical Devices, October 22, 2020. 
https://www.fda.gov/media/142998/download 
63 See the draft guidance for industry, investigators, and other stakeholders Real-World Data: Assessing 
Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and 
Biological Products (September 2021). https://www.fda.gov/media/152503/download 
64 Ibid. 
65 Adapted from https://www.ibm.com/cloud/learn/recurrent-neural-networks 
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