#### **ENGINEERING PHARMACEUTICAL INNOVATION**



# Living in a Virtual World with Tangible Results Virtualization Overview and Real World Case Study







Carolina-South Atlantic Chapter

Setting the Standard for Automation

#### Overview

- •Business Justification
- Software Selection
- System Sizing
- •Storage Hardware
- •Storage Protocol Selection
- Backing Up
- •Final Thoughts





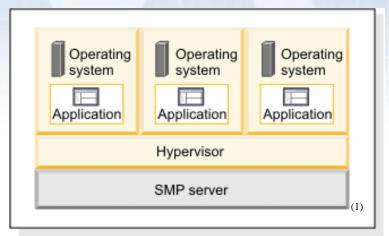


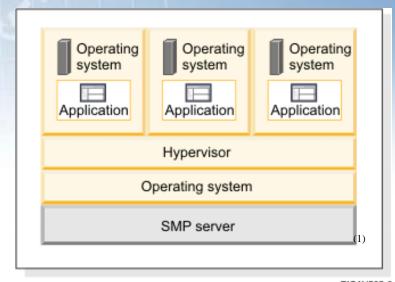
#### **Business Justification**

•The start of an idea

We need to replace some operator workstations, what about running virtual images?

- •Taking the next step virtualize servers
- Centralized management
- •Dramatic improvement in disaster recovery capabilities
- •Relocation of machines for ease of maintenance
- •Pending BMS system upgrade






#### Software Selection

•Type 1 vs. Type 2





EICAY502-3

•VSPhere vs. Hyper-V vs. XenServer













Setting the Standard for Automation

•Cataloging the System Types – Current and Future

| Category                                                   | Quantity |
|------------------------------------------------------------|----------|
| Process Control Servers (Historians, I/O Servers, etc.)    | 5        |
| Operator Workstations                                      | 8        |
| IT Type Servers (Domain Controllers, Backup Servers, etc.) | 5        |







#### •Detailed Breakdown – Machine by Machine

| Machine       | Service                              | Space Required (GB) | Memory<br>Required (GB) |
|---------------|--------------------------------------|---------------------|-------------------------|
| Server 1      | Historian                            | 200                 | 2                       |
| Server 5      | I/O Server, Tag Server, Alarm Server | 50                  | 2                       |
| Workstation 1 | Dedicated Operator Workstation       | 20                  | 1                       |
| Server 6      | Backup Exec Server                   | 20                  | 2                       |
| Workstation 8 | Dedicated Operator Workstation       | 20                  | 1                       |
| Server 7      | Existing Print Server                | 10                  | 1                       |
| Server 8      | New Sharepoint Server                | 50                  | 2                       |
| •••           | •••                                  | •••                 | •••                     |
|               | Totals                               | 830                 | 23                      |









#### • Planning for Growth – Machine by Machine

| Machine       | Service                              | Growth Factor | Planned Space (GB) |
|---------------|--------------------------------------|---------------|--------------------|
| Server 1      | Historian                            | 100%          | 400                |
| Server 5      | I/O Server, Tag Server, Alarm Server | 100%          | 100                |
| Workstation 1 | Dedicated Operator Workstation       | 25%           | 25                 |
| Server 6      | Backup Exec Server                   | 50%           | 30                 |
| Workstation 8 | Dedicated Operator Workstation       | 25%           | 25                 |
| Server 7      | Existing Print Server                | 25%           | 12.5               |
| Server 8      | New Sharepoint Server                | 50%           | 75                 |
| •••           | •••                                  | •••           | •••                |
|               |                                      | Total         | 1433               |









- Planning for Growth System Level
- Add 50% factor to Memory and Storage
  - 35 GB of Memory
  - 2.1 TB of Primary Storage
- Safety Factor for underestimating machine requirements or machine count







## Networking

- Dedicated Storage Network
  - •Redundant gigabit switches
  - •Redundant NIC connections to each switch
- •VM Communications Network
  - •Single gigabit switch redundant later if necessary
  - •Redundant NIC connections to switch
- •Pay attention to separating redundant connections across adapters







#### Storage Hardware

- Most Critical Selection
  - •Performance, Scalability, Reliability, Availability
- •4 Major Classes of Storage
  - •Component Hardware, Redundancy, Availability
  - 1 Single Controller, Commodity SATA Hard Drives
  - 2 Redundant Controllers, SAS Hard Drives, Online Managament
  - 3 Snapshotting and Deduplication
  - 4 Capacity to handle PB of data







## Storage Hardware

- •This project Class 2
  - Phase 1: (4) 300 GB 15K SAS Drives (Primary)
    - (3) 1 TB 7.2K SAS (Nearline/Backup)
  - •Phase 2: +(5) 300 GB Drives

Additional 1TB Drives







## Storage Protocol Selection

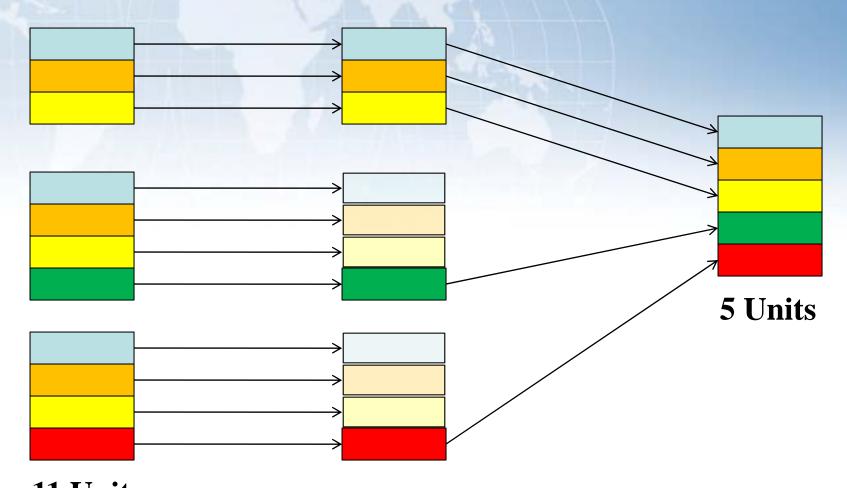
- ISCSI vs NFS vs FCOE
- •Scale and Performance need not drive selection
- •FCOE ruled out due to complexity and cost
- •ISCSI Slightly more complex
  - •LUN Setup with VMFS
  - •2 TB LUN Limitation
- •Ultimate choice driven by device selection







#### System Backup


- Best reason to virtualize (in my humble opinion)
  - •Scares people away due to unfamiliarity
- Chose ESXPress from PHDVirtual over Veeam Backup
  - Familiarity
  - •Small footprint (No Windows Install)
  - Appliances to perform backup
  - Deduplication
    - •15-20x reduction in space







# Data Deduplication









## Backing up the Backups

- Deduplicated data stored as series of self describing data blocks in folders
- •Use traditional backup methods to backup data blocks
  - •Backup to tape once a week
  - •Incrementals not necessary
    - •Deduplication so efficient you can keep weeks of daily backups
- •SAS Tape drive special challenge utilized DirectPath

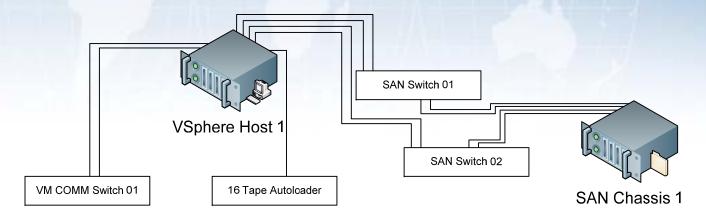






#### A Quick Word on Power

- Think about power planning and segregation
  - •Redundant Power Supplies on UPS
  - •Plan for Worst Case All machines starting up together on common circuit.



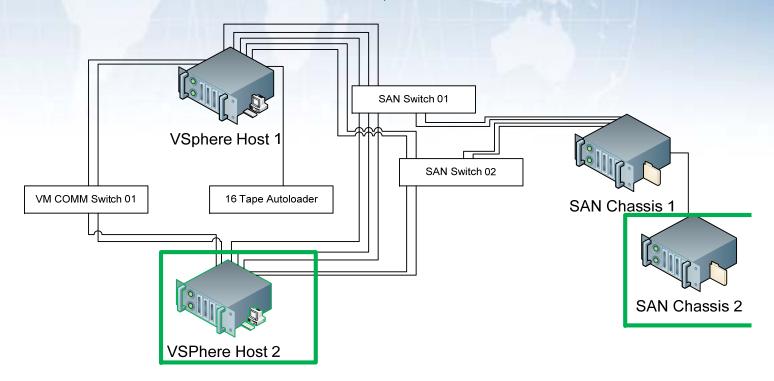





## System Layout

#### Phase 1 – Single Host, Single SAN Chassis





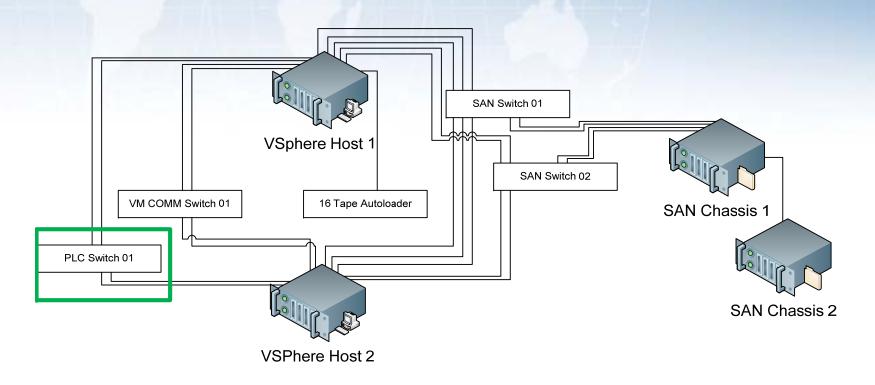





## System Layout

#### Phase 2 – Redundant Hosts, Extra SAN Chassis










# System Layout

#### Phase 3 – Dedicated PLC Network









#### Final Thoughts

- Virtualization is about more than just saving space,
   power, and money
  - •Take credit for disaster recovery
- Plan to spend the most time and money on storage.
- •Don't overthink your backups, let the technology do the work for you
- •Virtualization doesn't reduce the TSLC (Total System Lifetime Complexity), it just shifts it to the design phase instead of operation and maintenance.







# Questions, Comments, Thoughts





