ISPE Carolina-South Atlantic Chapter

Lean Manufacturing & Energy Management Projects at Morrisville Facility

Merck Biomanufacturing Network

- RTP Facility is part of the Merck's BioManufacturing Network in conjunction with a biomanufacturing facility in Bilingham, England
- In November 2009, Merck completed its merger with Schering-Plough Corporation
- Third Party Biopharmaceutical Contract Manufacturing
- Manufacturing of Active Pharmaceutical Ingredients (API)
 - Commercial
 - Clinical

Merck Rationale

- Exists as a top tier CMO now
- Retains and builds technical excellence across a range of biologics

Programs offered by Diosynth

- Program 1: Process Development
 - Fermentation
 - Purification
 - Analytical Development
- Program 2: Scale-up and Clinical Manufacture
 - Tech Transfer
 - Engineering run(s)
 - cGMP Manufacture to support Phase III
- Program 3: Process Validation
 - Laboratory process characterization
 - Analytical method validation
 - Engineering run
 - Process Validation runs
- Program 4: Commercial Manufacture

Lean Manufacturing at Diosynth

- Integrated Production Team (IPT) Structure
 - Fermentation
 - Cell Culture
 - Centers of Excellence (CoE)
- Number of current MPS Projects
 - >20 Projects
- # Kaizen executed
 - ~15 Kaizen's
 - Target of 2 per month

Merck's Stance on Energy

- Merck believes that reducing our environmental impact is consistent with our values as a health care company
- The 2010 ENERGY STAR Sustained Excellence Award
- Merck, has been an ENERGY STAR partner since 2004
- Recognized by the EPA for five consecutive years
- Merck is committed to energy conservation and our vision to be the most efficient energy steward in the Pharmaceutical Industry

What is motivating the Pharmaceutical industry to improve energy efficiency?

- Cost Reduction
- Energy/Utility Use Reduction
- Increasing cost & global volatility of energy supply
- Environmental responsibility and sustainability
- Greenhouse Gas Reduction
 - 10% reduction in GHG emissions based on 2008 baseline

Guidelines for Energy Management Overview

Self Assessment

CONVERTING DOWNER FOR THE BETTER WITH- ENERGY STAR	ERGY STAR [®] Ene	rgy Management A	ssessment Matrix	
	Little or no evidence	Some elements	Fully implemented	Next Steps
Make Commitment to Continuous In	nprovement			
Energy Director	No central or organizational resource. Decentralized management	Central or organizational resource not empowered	Empowered central or organizational leader with senior management support	
Energy Team	No company energy network	Informal organization	Active cross-functional team guiding, energy program	
Energy Policy	No formal policy	Referenced in environmental or other policies	Formal stand-alone EE policy endorsed by senior mgmt.	
Assess Performance and Opportun	ities			
Gather and Track Data	Little metering/no tracking	Local or partial metering/tracking/reporting	All facilities report for central consolidation/analysis	
Normalize	Not addressed	Some unit measures or weather adjustments	All meaningful adjustments for organizational analysis	
Establish baselines	No baselines	Various facility-established	Standardized organizational base year and metric established	
Benchmark Create Action Plan	Not addressed or only same site	Some internal comparisons among	Regular internal & external comparisons.	
Define technical steps and targets	Not addressed	Eacility-level consideration as. opportunities occur	Detailed multi-level targets with timelines to close gaps	
Determine roles and resources	Not addressed or done on ad hoc basis	Informal interested person competes for funding	Internal/external roles defined & funding identified	
Implement Action Plan				
Create a communication plan	Not addressed	Tools targeted for some groups used occasionally	All stakeholders are addressed on. regular basis	
Raise awareness	No promotion of energy efficiency	Periodic references to energy initiatives	All levels of organization support energy goals	
Build capacity	Indirect training only	Some training for key individuals	Broad training/certification in technology & best practices	
Motivate	No or occasional contact with energy users and staff	Threats for non-performance or periodic. reminders	Recognition, financial & performance, incentives	
Track and monitor	No system for monitoring progress	Annual reviews by facilities	Regular reviews & updates of centralized system	
Evaluate Progress				
Measure results	No reviews	Historical comparisons	Compare usage & costs vs. goals. plans. competitors	
Review action plan	No reviews	Informal check on progress	Revise plan based on results, feedback & business factors	
Recognize Achievements				
Provide internal recognition	Not addressed	Identify successful projects	Acknowledge contributions of individuals, teams, facilities	
Get external recognition	Not sought	Incidental or vendor acknowledgement	Government/third party highlighting. achievements	

Make a Commitment

- Commit to Continuous Improvement
 - Changing the Culture
- Appoint an Energy Champion
- Create an Energy Team
- Start putting together Energy Policies

Assess Performance

- Identify Savings Potential by Benchmarking
- Pharmaceutical Manufacturing Plant Energy Performance Indicator
 - US EPA's ENERGY STAR partnered with pharmaceutical companies to improve energy efficiency
 - EPA helps industry overcome barriers to using energy efficiently and provides energy management resources
 - Merck has 3 manufacturing plants that are ENERGY STAR certified
- http://www.energystar.gov/

Benchmarking Tools

Benchmarking Tools

Set Goals

- Understand how much energy is being used, where it is being used, potential savings and put it in context
- Set a Metric
 - \$500,000 per year over 3 years
 - Reduce Electricity Usage by 4,000,000 kWh per year
 - Reduce Natural Gas use by 14,000 decatherms per year
 - Reduce Water/Sewer by 11,000,000 gallons per year
 - Normalize the data

Put it in Context

- Reduce Electric by 4,000,000 kWh per year
 - Enough electricity to power 220 houses for a year (1600-2000sq.ft)
- Reduce Natural Gas use by 14,000 decatherms per year
 - Equivalent to burning 2400 barrels of oil
- Reduce Water/Sewer by 11,000,000 gallons per year
 - Enough water to fill 18 Olympic size swimming pools

Prioritize Potential Solutions

• Place your solutions in the Effort-Benefit Grid

How did we do it?

- Brainstorming Sessions
- Subject Matter Experts Voice of the Customer (VOC)
 - What does the customer need?
- Go and See
 - -Walk down to see where the wastes are

Create Action Plan

• Multigenerational Approach

								2010												2011						
Goals	Projects/ Activities	Who	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec	
Claim the VFD	High Level	ect RH																							_	
project	Complete and Financial Benefit																									
Steal CA project from Wilson	Define Measure																									\square
(Green Belt	Analyze																	_						_		
Project)	Improve																									
	Control																									
Quick Wins	Decon Autoclave																									
	Environmental Chambers																									
	Weston Boiler																									
Generation 1 of Ma	Itigenerational Proj	ect																								
Lighting -Energy Police	Start obtaining baseline data																									
Chiller Cooling Tower	Summarize baseline data and put together cost benefit analysis for CAPEX																									
Clean Steam System Efficiency	Start Collecting Baseline Data and Defining																									
Generation 3	Gather Baseline data for future projects																									

Implement the Action Plan

- Setting Up the Project
 - Business Case
 - Baseline Data
 - Problem Statement
 - A3/Charter
 - Lean Six Sigma
 - DMAIC (Define, Measure, Analyze, Improve, Control)
 - Kaizen
 - Just Do It Low hanging fruit

SIPOC

<u>S</u>	<u>l</u>	<u>P</u>	<u>O</u>	<u>C</u>
 Electric 	 Electricity 	1. Electricity	 Clean Air 	•User
Company	 Water for 	2.	 Instrument 	•Equip/
•Air	Cooling	Compressors	Air	Process
Equipment	•Air Demand	3. Driers	 Plant Air 	 Budget
 Water 		4.		holder
Company		Distribution		
		5. Use		

Compressed Air Example

- Define the System
 - Compressed Air Audit
 - Compressor Information
 - Full Load HP
 - Partial Load HP
 - Type of Compressor
 - Centrifugal, Rotary, Reciprocating
 - Type of Dryer
 - Refrigerator, desiccant, heat of compression
 - Compressor Control
 - Current Supply Pressure
 - Minimum Acceptable Pressure

Inventory Equipment

Equipment Number	KM-8501			Year	6/1/2002
				Installed	
Manufacturer	Kobelco	SN	06J0419	Model	KNW 0-D/L
Rated Capacity	332	CFM at	110	Psig	3550 RPM
Motor Rating	75	Hp	460	Voltage	104 Amps
Brake horse Power	83	BHP at	110	psig	
Condition:	Motor Eff	ficiency 94.	.5%Need p	performance	curve.
		-	_		

Evaluate Progress

- Measurement System Analysis
 - Our ability to assess the performance of a process is only as good as our ability to measure it
 - The measurement system is the 'eye" of the process
 - Identify and filter your X's (outputs)
 - Which Y's (inputs) impact your X's

X's and Y's

• Outputs

- Dew point
- PRV Set Point
- PSV Set Point
- CA Required Set Point
- Alarms
- Compressor Temperature
- Temperature
- Pressure
- Leaks
- Cost
- Run time
- Full/Half/No Load Time
- Control Strategy
- Compressor Capacity
- Air inlet temp
- Air inlet pressure
- Air outlet pressure
- Cooling water temp
- Air dew point temp
- Evaporator press

- Inputs
 - Cooling Water Temp
 - Intake Air Temperature
 - Electricity

Detailed Process Map

Data Collection Plan

- 3 Compressors
- Loaded Hours
- Unloaded Hours
- Loaded Amps
- Unloaded Amps
- Loaded KwH
- Unloaded kWH
- Calculate \$/CF

FOR MONTH/YEAR OF _____

AIR COMPRESSOR # _____

Date	Inter Cooler Drain	After Cooler Drain	Air Filter Cond.	Oil Filter Cond.	Oil Level	1st S Disc Air Pr Load	Stage harge essure Unload	2nd Stage Discharge Air Press.	Lube Oil Press	1st Stage Disch Temp	2nd Stage Disch Temp	2nd Stage Suction Temp	Disch Temp	Lube Oil Temp	Run Hour	Loade d Hours	Initials
1 2 3																	
ME	MERCK																

Summary of Data Collection

8500	Loaded Amps	Unloaded Amps	Loaded KW	Unloaded KW	Loaded Hours	Unloaded Hours	KWH/ Month	Cost/ Month
May	81	17	60.61	12.72	215	87	15765.08	1075.34
June	81	17	60.61	12.72	308	104	22584.39	1540.48
July	81	17	60.61	12.72	178	112	13052.02	890.28
August	81	17	60.61	12.72	329	104.5	24124.24	1645.51
8501	Loaded Amps	Unloaded Amps	Loaded KW	Unloaded KW	Loaded Hours	Unloaded Hours	KWH/ Month	Cost/ Month
May	89	18	66.59	13.47	169	78	13530.13	922.89
June	89	18	66.59	13.47	101	123	8086.06	552.36
July	89	18	66.59	13.47	277.4	87.6	22208.64	1517.07
8505	Loaded Amps	Unloaded Amps	Loaded KW	Unloaded KW	Loaded Hours	Unloaded Hours	KWH/ Month	Cost/ Month
May	81	17	60.61	12.72	240	121	17598.23	1200.38
June	81	17	60.61	12.72	285	58	20897.90	1425.45
July	81	17	60.61	12.72	272	109	19944.66	1360.43
August	81	17	60.61	12.72	379.2	148	27805.20	1896.59
			Í					1
May-Aug			48,956,544	CF		\$14,027		
Average			\$3,507	\$3,507				
Annual Co	ost based on	Average	\$42,080	,080				
Cost per 1000 CF \$0.29								
FRCK	· · · · · · · · · · · · · · · · · · ·							

Run Chart of CF/Day

Control Chart

Statistical Summary

Summary for CF/day Anderson-Darling Normality Test A-Squared 1.42 P-Value < 0.005 408643 Mean StDev 76064 5785705098 V ariance Skewness 0.43689 Kurtosis 1.18287 Ν 122 Minimum 176400 1st Quartile 355140 397980 Median 3rd Quartile 447462 225000 300000 375000 450000 525000 600000 Maximum 632340 95% Confidence Interval for Mean * 395009 422276 95% Confidence Interval for Median 388080 410400 95% Confidence Interval for StDev 95% Confidence Intervals 67569 87021 Mean Median 390000 395000 400000 405000 410000 415000 420000 **MERCK**

Compressed Air Audits

Based on a review of widely available industry literature below are the most common, highest-payback problems typically found during a professional audit of CA systems:

•(1) Leaks

•(2) Overpressurization

•(3) Double-Check Air Requirements

•(4) Angle Connections

•(5) Bad Piping

•(6) Obsolete Restrictions

•(7) Insufficient Storage

•(8) Inappropriate Use

•(9) **Pumps**

•(10) Maintain the System

Leak Survey

Date Leak Discovered	Lc De	ocation escription		Approximate Pipe/Tubing S	iize	Nuisance o Significant	or Sigr t subm	nificant (If nit SRF)	Lea Init	ik Discovered by ials
Was the leak repaired?	?	Yes	/ (Cir	No cle one)		SRF # if Applicable	•	I		
Comments:							·			
Administration										
Leak #			Date	Leak Fixed			Appro Size	oximate Leak		

Analyze

- Total # of Leaks Found
 - Estimated/Measure Loss in system
- Overpressurization
 - Can you reduce pressure based on actual requirements?
- Air Requirements
 - Dew points, Control strategy, etc.
- Inappropriate Use
 - Address the inappropriate uses in SOPs
- Maintain the System
 - PMs, etc.

Improve

- On-going
- Comprehensive leak detection program
- Compressed air requirements, both pressure (psi) and demand
- Cfm supply vs. demand
- Fix leaks
- Adjust others

Control

- Re-measure
- Mistake Proof Standardize the work
- Leak Detector Equipment
- PMs
- Education
- Update SOPs
- Install Meters

Merck Wilson (Before & After)

Before

Merck Wilson (Before & After)

Evaluation – 2009 vs 2010

2009 vs 2010 Overall

Recognize Achievements

- VFD Project
 - -\$100,000 savings/yr
- Weston Boiler
 - -~\$9,000/yr and 9 metric tons of CO2
- Compressed Air
 - DMAIC project, currently in Analyze Phase
- Lighting
 - Proposed \$50K savings per year, ~ 500 metric tons of CO2
- Energy Awareness Think Energy!

Reducing CO2 Emissions Example

- 10% of the electricity used in our Man. Facility is from the lighting
- Program to retrofit fixtures throughout facility to more efficient lamps and ballasts
- Reduce electricity used by 749,000 kWh
- Reduce cost by >\$50,000
- Reduce CO2 emissions by > 500 Metric Tons

Sustaining the Gains

- Education/Awareness
 - Business
 - Make Energy Awareness part of the business plan
 - People
 - Think Energy!
 - Process
 - Incorporate Energy Awareness into planning and operating procedures
 - Capital
 - Address Energy Awareness as part of Capital Investment Plan

www.energystar.gov/ia/business/guidelines/assessment_matrix.xls

Establish Best Practices

- Administration
- Lighting
- Utilities
- Process Applications
- Misc Mechanical
- HVAC
- Electric
- Architectural

Challenges and Lessons Learned

- Be prepared
- Sponsorship is key
- Don't count on the money
- Change is hard
- QA and Compliance implications
- Time

Conclusion

- Change the Culture

 Commit to Continuous Improvement
- Assess Performance
- Identify Savings Potential by Benchmarking
- Set Goals
- Create Action Plan
 - -Brainstorming, VOC, Best Practices, Prioritize

Conclusion (Cont.)

- Implement the Action Plan
- Tackle the Project
 - Define, Measure, Analyze, Improve, Sustain
- Evaluate Progress
 - -Monitor/Re-Assess
- Recognize Achievements
- Sustaining the Gains

Questions?

